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PLASMA MODELS OF ATOM AND
RADIATIVE -COLLISIONAL PROCESSES

V. A. Astapenko, L. A. Bureyeva,
V. S. Lisitsa

1. Introduction

Plasma models of atoms (PMA) have been attractive in atomic
physics for many years in spite of the rapid development of compu-
tational methods. An obvious advantage of these models is in their
simplicity and versatility which allow the description of many prop-
erties of complex atoms and ions on a common base. These include
the interaction potentials of atoms with charged particles [1, 2], pho-
toionization cross sections of atoms [3, 4], static and dynamic polar-
izabilities [1, 58] and other properties.

In recent years, the interest in plasma models increased in con-
nection with intensive research of new channels of bremsstrahlung ra-
diation in collision of atoms with charged (and neutral, in some cases)
particles. These channels are caused by the dynamic polarization of
atomic (or ionic) cores producing radiation during collisions, the so-
called polarization radiation (PR), see [9—11]. It is in such processes
that plasma properties of atoms appear. The present review is de-
voted to analysis of atomic plasma models from the viewpoint of their
application to the PR processes.

We should note that PMA are basically classical, because due
to the Pauli principle most plasma electrons in a complex atom oc-
cupy states with large orbital momentum values. In this sense the
properties of atom —electron clots can be considered on the base of the
same approaches as are applied to fluctuations in plasmas, in partic-
ular, to the calculation of dynamic properties of the electron “coat”
that screens the Coulomb field around an ion in plasma [12, 13].

1



2 V. A. Astapenko et al

From this point of view, the atomic nucleus in plasma exhibits a sort
of double screening produced by bound electrons of the ion’s core
and by free plasma electrons that cause the Debye screening. Using
PMA, both types of screening can be considered on a common base.
Then the problem of collective properties of atomic electron plasma
which was discussed in [14, 15] is solved, in our opinion, by an ef-
fective description of the specific phenomena utilizing plasma models
(see also [6, 7]).

The starting point for describing atomic features in the plasma
approximation is the static Thomas— Fermi model and its modifica-
tions [1, 2]. The model itself is essentially the simplest plasma model
describing atomic properties. Indeed, the Thomas— Fermi distribu-
tion for a multielectron atom can be obtained, according to [7], by
solving the self-consistent Vlasov’s equations traditionally exploited
in plasma physics [12—16]. The corresponding system of equations
has the form (here we use atomic units with h = e =m, =1):

of of of _

E'FPE—VU%—O, (1.1)
AU = 4rn[Z i(r) — n(r)], (1.2)
n(et) = [ 7.p.1)dp. (1)

Here f(r,p,t) is the distribution function of electrons, U(r,t) is the
potential energy of electrons in the self-consistent field, n(r,t) is the
electron density distribution, and Z is the charge of the atomic nu-
cleus. In the absence of external electromagnetic fields the distribu-
tion of electrons and their energy are f(r,p,t) = fo(r,p), U(r,t) =
o(r), n(r,t) = no(r) respectively. Thus the solution to Eqn. (1.1)
can be represented in the form:

2
fo(r,p) = @)

Here the Fermi energy for degenerate gas of atomic electrons which
obey the Pauli principle has been taken into account. Substitut-
ing (1.4) into Eqns (1.2) and (1.3) yields the Thomas— Fermi distri-
bution:

0(Br - B), E=p*/2+4¢().  (14)

P

D o) = V2B — (). (1.5)

no(r) =
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Z T
Er — = — —_—
F (P(r) r X<TTF>7
(1.6)
_ b h= 3ﬁ508853
TR = 77 = {15 = .

Here x(z) is the Thomas—Fermi function and rrp is the Thomas—
Fermi radius.

Thus, using the atomic plasma model with the additional as-
sumption of the relevance of the Fermi boundary energy to atomic
electrons allows us to recover the Thomas— Fermi distribution.

Atomic plasma models permit us to examine, as noted above,
the general properties of polarization radiation caused by dynamic
polarization of shells of atoms or complex ions. The term “polar-
ization” is used below in the sense of the dynamic polarization of
a medium by alternating electric fields of charged particles, typical
for plasma applications. However, the role of the medium in atomic
processes considered below is provided by a complex atom with its
own electrons. It is these electrons that are polarized by the incident
charged (or neutral) particle.

The polarization radiation can be most easily understood by
its analogy with the light scattering by atoms. The physical anal-
ogy of the polarization effects can be clearly illustrated. Figure 1
shows the classical scheme of the polarization radiation (Fig. 1a) and
Feynmann’s diagrams (Fig. 1b) which describe within the frames of
the first Born approximation PR of electrons in collision with atoms
(“inelastic” or non-coherent PR). If the target’s core does not change
its state (“elastic” or coherent PR) then, naturally, f =+4. The same
diagrams describe polarization effects (1) in photoionization if the ini-
tial state of the incident electron is substituted by the bound state,
(2) in photorecombination if the final state is considered as bound and
the initial state as free, and, finally, (3) in bound —bound transitions
if both states are considered bound. The double line connecting the
vertexes of the displayed diagrams represents the electron propagator
of the target core, which in the case of the “elastic” PR is expressed
in terms of the dynamic polarizability and for the bremsstrahlung—
in terms of the Compton scattering cross section.
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It is important to notice that in the case of the polarization
radiation the perturbed atom is the emitting object while the energy
is being lost by the perturbing particle (electron or ion). The process
looks inelastic with respect to the perturbing particle although the
photon is emitted by the atomic frame. It is this last fact that causes
the polarization radiation to be independent of the incident particle
mass, in contrast with the static channel.

For free —free transitions, the process of PR is similar to the or-
dinary bremsstrahlung, hence the term polarization bremsstrahlung,
PBR [9]. For bound- bound transitions, PR processes are mostly
known as the core polarization effects changing oscillator strengths
of radiative transitions. Clearly, free-bound transitions can be called
polarization recombination [17].

The subdivision of the emitting systems on the perturbing and
polarized parts is rather conditional and is mainly used to make rep-
resentation clear. In fact, the entire compound system “atom -+
perturbing particles” produces radiation. Such an approach to the
problem of radiation by the compound was first suggested by M.
Born in 1940 when he studied the general theory of bremsstrahlung
(see Chapt. 22, p. 9 in the book by Mott and Messi [18]). This
approach entails, in particular, the possibility of interference of the
ordinary and polarization radiative channels. The ordinary channel
corresponding to the motion of the perturbing particle in the potential
of the “frozen-out” non-perturbed atom will be called static below, in
contrast to the above-mentioned polarization channel corresponding
to deformation of an atom (or its core).

One of the first estimates of the polarization channel in radi-
ation were done by S. P. Kapitza [19] and M. L. Ter-Mikaelyan [20]
within the frames of purely classical electrodynamics. These calcu-
lations were based on the notion that scattering can occur on the
proper electric field of a charged particle inside matter, which can be
taken into account by multiplying the intensity of this field by the
extinction coefficient in this medium. By expressing this coefficient
in terms of the static polarizability of the medium one can obtain the
simple relation (see [21], the problem to §119):

_8rw'/eNa

2 2
I (w) e / |E(w)[? dV dw (1.7)
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Fig. 1. (a) The classical scheme of the polarization
BR of a charged particle on an atom. (b) Feyn-
mann’s diagrams describing the polarization BR
of an electron on an atom in the first Born approx-
imation. The double lines relate to the electron
core of the atom, the single lines mark the incident
electron, the dashed line shows a free electromag-
netic field, and the dashed-dotted line denotes the
photon propagator.
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where ¢ is the dielectric permeability, N, « are the number den-
sity and the polarizability of the scattering centers of the medium,
respectively, F(w) is the Fourier-image of the charged particle’s field
at frequency w, c is the speed of light.

The approach described above stems from the well-known
method of equivalent photons proposed by Fermi [22], who treated in-
teraction of charged particles with atoms as absorptions of an equiv-
alent photon flux with intensity I(w) determined by the Fourier-
decomposition of the electric field generated by the charged particle.
Note that the photon equivalence is the exact result for relativis-
tic particles (the Weizsecker — Williams theorem), but below we use
an approximate version of this theorem related to the field of non-
relativistic particles, as it was the case in the original Fermi’s work.

This field can be found from equations of motion of the incident
electron in the atomic potential

F =er/r’ = —mct/Zege, F, = —mew?d, [ Zese?. (1.8)

Here Z is the effective charge of the ionic core (depending upon the
electron energy and the emitting frequency).

Therefore, it is easy to generalize the above results on the case
of the dynamic polarization of an atom by a particle’s field by multi-
plying the intensity I(w), determined by the square of the modulus of
Fourier-component (1.8), with the scattering cross section ogeat(w):

I"(w) = ogear (w) I(w) - (1.9)

The cross section ogeat(w) is connected to the dynamic polar-
izability of an ion (atom) «(w) at the frequency w:

8w
Oscat (W) = ?W(WNQ, (1.10)

(@) = 3 |din|*[(@ni = w = 10) ! + (wpi +w = i0) 7], (1.11)

in which (due to non-resonance conditions) one should take into ac-
count (virtual) transitions of the emitting electron into all other en-
ergy levels of the ion (enumerated in Eqn. (1.11) by index n).
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Making use of relationships (1.8) allows us to easily connect
the PR intensity with the bremsstrahlung intensity at some effective
Coulomb center with charge Z.. Indeed, the particle’s equation
of motion ensues that the field induced by the particle itself at the
nucleus is Zg¢ times as small as the nuclear field that is responsible
for acceleration of the electron and thus its radiation. From here the
simple expression for the ratio between the incident particle scattered
field intensity and the radiated field intensity during interaction with
the nucleus can be found:

PRw) lmwQIa(wﬂr = R(w) (1.12)

IBry €2 Zet

This expression demonstrates that the spectral intensity distribution
for the incident particle falls off the relationship.

Expression (1.12) corresponds to the classical dipole approxi-
mation for the charged particle interaction with atoms of matter and,
in spite of its apparent simplicity, describes a number of important
relationships for PR. This expression implies that the polarization
effects are proportional, naturally, to the polarizability of matter. At
small frequencies, the dynamical polarizability transforms into the
static one and polarization effects rapidly decrease with decreasing
frequency. At large frequencies, the dynamical polarizability corre-
sponds to scattering on quasi-free electrons a(w) = —Nee?/mw?,
so that the ratio of both channels is equal to the ratio of the number
of bound electrons Ngt to the effective nuclear charge of the atomic
core Zef:

R(w) = (%)2 (1.13)

It is clear that the effective charge Zg, as well as the effective
number of quasi-free electrons N, depends upon the penetration
degree of the incident electron into the atomic core, the correct al-
lowance for which is essential to calculate the contribution from the
polarization channel into radiation emission.

The above concept of PR as scattering of the incident particle’s
proper field suggests a broad analogy between the PR and Compton
scattering by atoms [23], and also between the latter process and the



8 V. A. Astapenko et al

collisional ionization of atoms by electrons, see [18]. Such analogs
allow many results relating to one field to be applied to another one
and thus to obtain some new data.

The structure of the review is as follows. In Chapter 2 we
present the general results of atomic plasma theory and compare it
with more rigorous quantum calculations. Chapter 3 is devoted to
the general theory of radiation emission of charged particles scatter-
ing on complex ions in plasma, accounting for polarization interaction
channels both with the ionic core and the Debye “coat”. In Chap-
ter 4 we review atomic plasma model applications for photoionization
calculations. Chapter 5 analyzes bremsstrahlung and photorecombi-
nation radiation of charged particles in plasma with complex ions
and estimates the polarization channel contributions into the total
recombination rate and plasma radiative emission efficiency. The po-
larization channels of radiation emission of fast particles in plasma
are considered in Chap. 6. The polarization channel contribution to a
low-temperature plasma radiation emission with account for its inter-
ference with the static channel are presented in Chap. 7. Multiphoton
emission— absorption polarization processes in a laser radiation are
considered in Chap. 8. In Chapter 9, we use the interrelation between
PR processes, the Compton scattering, and collisional ionization for a
more accurate calculation of the ionization cross sections of complex
atoms. Chapter 10 concerns with experiments on observing polariza-
tion radiation emission in various media.

2. Plasma characteristics of atoms
in phenomenological and kinetic models
of atoms. Dynamic polarizability of atomic
structures

A key feature describing polarization effects in atomic transi-
tions is dynamic (in the general case), generalized (non-dipole) po-
larizability of an atom (ion) or atom’s core a(w,q). Its calculation is
a complicated task which allows an exact solution only for hydrogen-
like atoms [24]. Quantum mechanical calculations of the dynamic
polarizability of multielectron atoms are sufficiently difficult and la-
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borious. At the same time, there are model approaches to handle
this problem which are based rather on the physical intuition than
on utilizing a consistent mathematical formalism. The local plasma
frequency (LPF) approximation, or the Brandt — Lundqvist model [3],
is one such simple model.

2.1. Brandt—-Lundqvist local plasma frequency model

The local plasma model was suggested in paper [3] to describe
the photoabsorption by many-electron atoms in the spectral range
w ~ Z Ry. In contrast to the high (w ~ Z? Ry) and low (w ~ Ry)
frequency ranges, absorption of a photon at these intermediate fre-
quencies is mainly determined by collective effects and to the less
extent by single-particle interactions. Based on these qualitative
considerations, the electronic core of an atom is approximated by
an inhomogeneous charge distribution whose interaction with elec-
tromagnetic field occurs via the plasma resonance (atomic units—

au):
w=wp(r) =+/47n(r). (2.1)

Here n(r) is the local electron density and wp(r) is the corresponding
local plasma frequency. It is easy to check that condition (2.1) entails
the following expression for the dipole dynamic polarizability that
respects the dispersion relations and the sum rules [3]:

_ Y wW(r) r2dr _
Bt (w) = O/ w%(:) 0 /aBL(r,w) dr. (2.2)

Here we introduced the quantity oP"(r,w) that can be naturally
named the polarizability spatial density in the Brandt— Lundqvist

approximation, Ry is the size of the atom (ion).

The generalized polarizability in the LPF model can also be
conveniently written in the coordinate representation «(w,r). The
corresponding expression [25] differs from formula (2.2) only by the
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upper limit of integration:

o0

_ r w3 (r') ' dr! B . 2
alw,r) = O/ e S 0/ olw,7) jolqr) rdr

(2.2a)
where jo(x) is the zero-order spherical Bessel function.
Expression (2.2) has the correct high-frequency asymptotic

Ne

BL( _Fa

a(w— 00) = (2.3)
N, is the number of electrons in the atom. In the low frequency limit

Eqn. (2.2a) yields:
o™ (w —0) > R /3. (2.4)

Despite the apparent simplicity, formula (2.4) in some cases
describes well the existing experimental data. This firstly relates to
multielectron atoms with closed shells because then the main contri-
bution to the polarizability is provided by the atom’s bound energy
spectrum [26] and the local plasma frequency approximation is most
adequate. This fact is illustrated by the following table:

Table 1.

Atom (ion) | ArI | KrI | Xel | KII | RbII | CsII | SrIIT | Balll
ag® (aw) |11 |17 |27 |75 |12 |163]6.6 |11.4
o (a) |19.3126.8(30.9 (9.1 |14.3 |17.8 |87 |11.4
oyt (a.u.) 21.1(255 (6.6 |11.9 [153 |75 |9.7
0% (aw.) |11.6 |17.227.3|5.25|8.5 |14.6

abt (aw) |22 |24 |27 |86 |11.6 [135 |7 8.4

(07

Here o means computations by the variation method [1],
VSh

g stands for Vinogradov and Shevelko’s calculations [5] (see
Sect. 2.2), ag? is Stott and Zaremba’s calculations [27] utilizing



Plasma models of atom 11

the electron density formalism, af" denotes computations in the
Brandt —Lundqvist model. Calculations of the static polarizability in
the Brandt — Lundqvist model made use of the radius of an atom (ion)
computed with account of the correlation correction in the Thomas—
Fermi— Dirac model.

Table 1 implies that the static polarizability of atoms (ions)
with completed shells calculated by the BL method is in fair agree-
ment with experiments.

Note that expression (2.2) represents the simplest realization
of the electron density functional (EDF) formalism for polarizability.
Much more complicated realizations of EDF within the quantum me-
chanical approach frames are reported in papers [27] and [28]. Note
that in [27] the static polarizability of spherically symmetric systems
is expressed through the polarizability spatial density:

op =

Q| W~

7'('/7“304(7“) dr. (2.5)
0

In this expression, however, function «(r) is a solution of a complex
integral equation.

Different modifications of basic formula (2.2) were considered
in relation with the problem of computation of atom photoeffect cross
sections [29]. These modifications were based on considering, in ad-
dition to the local plasma frequency (2.1), the local “single-particle”
frequency:

o

s2p(7‘) = T%Nout(r)7 Nout(r) = /TL(’I") > (2.6)

r

W,

and an atom’s dielectric permeability in the simplest form:

wa(r)
w?

e(ryw)=1-— (2.7)

One expression used in [29] for the dynamic polarizability is

the equality
n(r n(r)e” " (r,w)
/d3 w2 — 5 (2.8)
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Using Eqns (2.2) and (2.8) yields close results. The model used for
the local atom’s electron density has more effect on the results. For
a Thomas— Fermi atom it is possible to obtain the expression for the
dynamic polarizability that reveals the similarity (scaling) law with
respect to the ratio of the frequency to the nuclear charge:

a(w, Z) =rip B <%> = b3Za% p <%> :

B 47 f(z) 2% dx
) = ) dr f(z) —v2—i0"

Here rrp = bag/Z'/? is the Thomas ~ Fermi radius,
1/3
b= (972/128) P & 0.8853,

Z is the atomic nuclear charge, ay the Bohr radius, S(v) is the
dimensionless polarizability as a function of the reduced frequency
v=w/Z, xog = Ry/rrr is the reduced atomic radius,

)\ 3/2
f(z) = fre(z) = % (M) (2.10)

x
Xx(z) is the Thomas— Fermi function.
Note that formulas (2.9) are also applicable for other statistic
models of the electron density, in which it can be presented in the
form:

n(r) = 2% f(x =r/rre). (2.11)

The similarity function f(z) in Eqn. (2.9), instead of (2.10),
can be more conveniently taken from the Lenz— Jensen model [1]:

3
14+0.26v9.7
fri(z) 23.7e V0T ( CREEE ) (2.12)

Lenz— Jensen function (2.12) is close to its analog (2.10) in the Tho-
mas — Fermi model; an advantage is that it has a more realistic be-
havior at large x.
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The results of calculations of the real and imaginary parts of
the dipole polarizability of the krypton atom using the local plasma
frequency model (with the Slater and Lenz— Jensen electron density)
are presented in Fig. 2. In the same figure we show the results of
calculations of the corresponding values in the random phases with
exchange approximation obtained in paper [30]. It is clear that the
dynamic polarizability of the krypton atom computed in the LPF
model with the Lenz— Jensen electron density smoothly reproduces
quantum-mechanical features of the frequency behavior. These ap-
pear most obviously near the ionization potentials of electronic sub-
shells, in a way like the statistical density of the electron distribution
reproduces the exact quantum-mechanical relationship. The usage of
the Slater wave functions in this model reveals, to some degree, spec-
tral oscillations of the polarizability near the ionization potentials
of electronic subshells. Here, however, the universality of descrip-
tion, featured to the statistical model of atom, breaks down. Despite
a qualitative character, an advantage of the Brandt— Lundqvist ap-
proximation is its simplicity, clearness, and universality.

Let us consider a model example in which the usage of the
Brandt — Lundqvist approximation allows an explicit expression for
the complex polarizability to be obtained. It corresponds to an inho-
mogeneous plasma formation with linear electron density distribution
along radius, when the function f(z) in Eqn. (2.11) can be repre-
sented in the form

Sin(7) = 128 < a

—_— - — < . 2.1
3 3 g 0) y x i) ( 3)
Then Eqn. (2.19) yields:

3 3 512
Im{ﬂ(v)} = m .’ﬁg I/2 (1 - - = ZL'% I/2> ) 14 S W 5 (214)
0

(2.15)
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Fig. 2. Frequency dependences (multiplied by the
frequency square) of the real (a) and imaginary
(b) parts of the krypton atom polarizability cal-
culated in different approximations: I — the local
plasma density for the Lenz— Jensen electron den-
sity, 2 — the local plasma density for the Slater
electron density, & —random phase with exchange
approximation [30].
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Parameter xg, which is the reduced radius of the plasma for-
mation, can be evaluated if the static polarizability «q is known using

the formula: 27 13
e
zo=4 (ﬁ) : (2.16)
Note that the reduced radius of ion has been calculated in
paper [5] within the Thomas — Fermi— Dirac model frames as a func-
tion of the ionization degree ¢ = (Z — N,)/Z, where the following
expression has been obtained for zy(q):

6.84¢ /3, q <0.05,
zo(q) =

2/3 2.17
2.96(%)/, 02<q<1. (2.17)

A comparison of the frequency dependence of the real part of
polarizability (2.15) with the parameter zo = 9.2 (which would cor-
respond to the argon atom if one uses Eqn. (2.16) to find the reduced
radius), with results of a quantum-mechanical computation in the
approximation of random phases with exchange (RPEA) carried out
in [26] for the argon atom, indicates that the linear approximation
for the atomic electron density is too crude. The most appreciable
difference of these calculations is that the RPEA yields the real part
of the dynamic polarizability, compressed approximately two times
along the abscissa compared to predictions of the simplified approach
described above.

2.2. The response functions and the static
polarizability of a Thomas —Fermi atom

There are more rigorous approaches to compute the polariz-
ability of a Thomas— Fermi atom. For example, in paper [5] the
calculation of the static polarizability g of the atom (ion) is based
on finding atom’s response on an external electric field. The problem
is reduced to solving a differential equiation for the induced potential
¢1(r) using the Thomas— Fermi approximation. The corresponding
equation for the electric potential induced by an external field with
strength E has the form:

vz

Agpi(r) = — (900(7’) L

]

1/2
) oi(r), r<r. (218)
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Here g is the unperturbed potential and r¢ is the atomic size.
Equality (2.18) results from linearization of the initial Thomas—Fermi
equation for the total potential.

Outside the atom, the induced potential is expressed in terms
of atom’s static polarizability determined by the formula:

E
1(r) = —rE—I—aor—;, r>7g. (2.19)

To separate angular variable, a new function u(r) is intro-
duced:

1(r) = (Er) u(r) . (2.20)

Making use of the continuity condition for u(r) and its deriva-
tive u’ at the atomic boundary, the following expression was obtained
in [5] for the static polarizability:

_ .3 3u(ro) i
ag =1y <1 + o u’(r0)> . (2.21)

In the case of multicharged ions Z > N., when one sets
u(r) = —1 in the first approximation, the static polarizability is
found to be:
_ 63 N2
=16 74 -

The dependence of the static polarizability of a multicharged
ion on the nuclear charge, which is proportional to Z~* and fol-
lowing from Eqn. (2.22), can also be derived from a more rigorous
quantum treatment for ions with completed shells. Indeed, in that
case, if Z > N,, the minimum frequency of virtual transition is pro-
portional to the nuclear charge square. Then the above dependence
on Z follows straightforwardly from the general quantum-mechanical
expression for the polarizability:

g (2.22)

aw) =Y ﬁ . (2.23)

Note that for a hydrogen-like ion the static polarizability takes
the exact value:

ap = (2.24)

1
ﬁa

N ©
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whereas the usage of Eqn. (2.22) gives rise to the 14% error. For
non-completed electronic shells the main contribution to the static
polarizability is provided by the virtual transition without change of
the main quantum number. In this case oy o Z73.

A similar method can be applied to calculate static multipole
polarizability of atoms and ions in the Thomas — Fermi model [8]. The
general expression for the multipole polarizability «, has the same
structure as Eqn. (2.21). A simple analytical representation for o
can be found in the case of multicharge ions [8]:

445\ 1/3 4K+5)/3 7—(2k+2

o — (34 _1> (45 + 3)1t NUs+5)/3 7—( >agﬁ+1, 2> N,
24k 26+ 1)T(2k +4)

(2.25)

To conclude this point, we note that for ions with completed

outer shells there is a simple empirical formula for the static dipole

polarizaility of the external shell with the main quantum number n
that gives fair agreement with experiments:

6
ﬁ .

n

ap = Ny, (2.26)

Here N, and Z, are the number of electrons in the external shell
and the effective nuclear charge, respectively. The latter can be de-
termined as Z, = n+/21,, where I, is the external shell ionization
potential.

Formula (2.26) gives an especially good result for neon-like
atoms (n = 2, N, = 8), as follows from Table 2. In this Table we
also display the results of caluclations using Eqns (2.21) from [5, 8]
and experimental data from [31].

Here the number in round brackets means the power of 10
which should be multiplied by the given value. As is seen from this
Table, the agreement with experiment gets somewhat worse with in-
creasing the ionization degree of ions, when the situation becomes
more hydrogen-like, and Eqn. (2.26) gives a slightly smaller value.
At the same time, using Eqn. (2.26) gives better agreement with ex-
periment than Eqn. (2.21), especially for high ionization degrees.
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Table 2.

ion Art8 Cat!0 | Tit!2 | Fetl® | Cot!?
I,, eV |396.4 558.2 737.8 1168 1293
Zn 10.8 12.8 14.73 18.54 19.5
AP | 316(-2) | 1.74(-2) | 1.04(-2) | 4.44(-3) | 3.69(-3)
ao (2.21) | 3.75(-2) | 2.46(-2) | 1.68(-2) | 8.61(-3) | 7.41(-3)
o (2.26) | 3.76(-2) | 1.89(-2) | 1.09(-2) | 4.33(-3) | 3.53(-3)

ion Nit18 Znt?0 | Krt?6 | Mot32
I,, eV |1419 1693 2728 3960

Zn 20.43 [22.32  [28.33 |34.13

g | 3.08(-3) | 2.63(-3) | 9.31(-4) | 4.62(-4)
ap (2.21) | 6.4(-3) | 10(-3) | 4.46(-3) | 2.24(-3)
o (2.26) | 2.94(-3) | 2.06(-3) | 7.95(-4) | 3.77(-4)

2.3. Kinetic model of the dynamic polarizability
of atoms

A more general approach was developed in [7] to calculate the
dynamic polarizability of atoms. In that paper, initial equations were
taken in the form of Vlasov’s kinetic equations for the self-consistent
field. The boundary conditions were chosen to correspond to the
problem of radiation scattering on the atomic clot. These boundary
conditions differ from those with constant parameter values on the
boundary [14] corresponding to the problem of the proper oscilla-
tions of atom’s electronic core. So no sharp resonances at the plasma,
frequency appear in the method [7] and the general setting of the
problem is more adequate to the problem of the dynamic polarizabil-
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ity calculation. The solution of this scattering problem reduces to
calculating the electric potential ¢(r) in an inhomogeneous medium
which is described by the equation

div[e(r,w) Ve(r)] =0 (2.27)

with boundary conditions at infinity (2.19) and the local dielectric
permeability (2.7). Note that Eqn. (2.27) is valid in the long-wave-
length approximation A > Ry, which, nonetheless, does not con-
tradict to high-frequency approximation for the dielectric permeabil-
ity (2.7). Indeed, the conditions for the both approximations are
satisfied simultaneously (for moderate nuclear charges and polariza-
tion degrees) when the frequency lies in the broad range 10eV <
w < 10 keV. As in the Brandt — Lundqvist approximation, the usage
of the Thomas— Fermi model for the electron density of atom (ion)
leads to a scaling law for the polarizability like in Eqn. (2.9):

alw, Z, q) = %ax (% q) . (2.28)

Here ¢ = (Z — N¢)/Z is the ionization multiplicity, ax is a universal
function of the reduced frequency v = w/Z calculated in [7]. Note
that within the frames of the approach discussed the static polariz-
ability is found to be

Re{ax(v =0)} = = (2.29)

as opposite to the Brandt —Lundqvist model predictions (2.4). Result
(2.29) noticeably overestimates the static polarizability, although it
is derived from a more rigorous theory. For example, the maximum
of the imaginary part of the polarizability ax occurs (for ¢ = 0.3) at
the reduced frequency vpax = 0.06 a.u. This is by almost an order of
magnitude lower than in the local plasma frequency approximation
for a neutral Thomas — Fermi atom.

The Brandt— Lundqvist approximation follows, as was noted
in [7], from the corresponding solution of Eqn. (2.27) if the term
o ¢’ [e is taken into account using perturbation theory, which, gener-
ally speaking, violates self-consistency of the problem. Nevertheless,
the use of the more simple expression (2.2) in numerical calculations
of the dynamic polarizability of atom seems to be preferable.
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Note that in some cases Eqn. (2.27) with boundary condi-
tion (2.19) allows an analytical solution and the expression for the
dynamic polarizability can be written explicitly. In paper [6] this
problem was solved for a model case of an inhomogeneous dielectric
particle with electron density changing along the radius:

n(r)=ng(l —r/a) . (2.30)

The solution implies that at frequencies w > wy = /47w ng the po-
larizability is real and at w < wy a(w) becomes a complex value,
with the imaginary part reaching a maximum at the frequency w =
0.273 wy with the width v = 0.076 wy. The function a(w) having
imaginary part is an interesting distinctive feature of the inhomoge-
neous dielectric particle, because a homogeneous particle with real
dielectric permeability can not absorb radiation at all.

2.4. Quantum calculations of the dynamic
polarizability

For the hydrogen atom and hydrogen-like ions the problem
of determination of the dynamic polarizability can be exactly solved
(see, for example, [32]). For an atom in the ls-state, the dynamic
polarizability can be obtained using the Coulomb Green function for-
malism to have the form:

(W) = —% {1-T(Eis +w) —T(Es —w)},

B 277]5 7.9 B Z
1) = Gt T2 A SvRE

Here Z is the nuclear charge, F(z) is the hypergeometric function.

The generalized (non-dipole) polarizability of a hydrogen-like
atom can be represented in a closed form as well. The corresponding
expression for the ground state follows from matrix elements obtained
in [24] using Green function methods and in [33] employing the varia-
tional principle. For excited states the expression in [30] was obtained
with the help of the Green function method in the coordinate repre-
sentation.
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For atomic systems in which many-particle effects are weakly
expressed in the polarizability at frequencies considered, for example
at frequencies of the order of the first ionization potential for the
isoelectron row of the alkaline metals, the polarizability can be rep-
resented in the hydrogen-like form using the quantum defect method
or model potential [32]. In this case, virtual transitions of the ex-
ternal electron in the discrete spectrum which have high oscillation
strengths are the main conributors to the polarizability.

In the case of negative ions (for frequencies below or of the
order of the photon ionization potential), the main contribution to
the dynamic polarizability is provided by the external electron, which
weakly interacts not only with electrons of the core, but also with the
atomic nucleus. The dynamic polarizability of the negative hydrogen
atom is calculated in [34].

In some cases, the single-particle approximation proves to be
insufficient to calculate the polarizability due to importance of many-
particle effects. This takes place, for example, for atoms with com-
pleted shells. Here one should apply methods of the many-particle
perturbation theory [15]. The initial expression for the generalized
polarizability in such calculations has the form [9, Chap. 7]:

a(w,q) = (‘;) 5 2ilewliane] <§13(:2>> ) (e + 1))

e>FLj<F (e+1;) ’

(2.32)
where e is the unity vector of the radiation polarization, F' is the
Fermi level, I; is the ionization potential from j-th shell. The sum-
mation is performed over occupied shells and free states including
the integration over the continuum. The many-particle correlations
in Eqn. (2.32) are taken into account by introducing the effective
dipole moment D(w), which is the solution of some integral equa-
tion. Using graphical representation, this equation in the approxi-
mation of random phases with exchange consists of diagrams that
have the creation and annihilation of an electron—hole pair as the
principal structure unit. The latter process can be interpreted as
the induction of polarization in the target’s electronic core. The
corrections due to the random phase approximation can appreciably
alter the dynamic polarizability and other radiation characteristics
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Table 3. Static polarizabilities of the noble
gas atoms (in atomic units) calculated by various
methods and their experimental values.

Method Ne | Ar Kr Xe

HF (V) [26] 1.88 [ 7.40 | 11.15|17.25
HF (r) [26] 2.47 [ 12.39 | 18.98 | 32.45
RPEA [26] 2.30 | 10.73 | 16.18 | 27.98
FFP [27] 2.76 1 10.6 | 15.7 |24.9
Experiment [35] | 2.66 | 11.09 | 16.75 | 27.32

of multielectron system, such as photoionization cross section. Here
correlations of other types could be significant, as indicated by com-
parison of the calculated photoeffect cross sections with experimental
data [15].

The polarizability of the noble gas atoms in the random phase
with exchange approximation were calculated in paper [26]. It was
shown that choosing the Hamiltonian in the form of the coordinate or
momentum, without taking into account many-particle correlations,
leads to significantly different results for the polarization. Making
allowance for the correlations, both approaches yield virtually the
same values for polarization which are very close to experimental
data. It was also established that virtual transitions from the external
shell into the d-th states of the continuum mostly contribute to the
polarization of noble gas atoms. The contribution from the transition
in the discrete spectrum is 10—20%. The static polarizability of the
noble gas atoms was calculated self-consistently in [27]. The results
of these calculations and experimental data for the noble gas atoms
are listed in Table 3.

Dynamic polarizability of the Rydberg states with fixed spher-
ical quantum numbers n,[,m was calculated in paper [36] employing
quasi-classic expressions for radial integrals which enters the oscil-
lator strengths (see Eqn. (2.23)). These calculations revealed some
distinctive features of the polarizability of these states, which are
due to approximately equidistant energy spectrum of the Rydberg
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energy levels. This fact ensues a qualitatively different behavior of
the resonance polarizability due to superposition of contributions of
the above- and below-lying levels. As a result, the dynamic polariz-
ability of highly excited hydrogen-like states does not change the sign
at the resonance crossing, and vanishes either twice or any inside the
inter-resonance intervals. The non-resonance dynamic polarizabil-
ity of such levels is proportional to the sixth power of the principle
quantum number, while each separate term in expression (2.23) is
proportional to the seventh power which in turn is due to the above
mentioned mutual compensation of contributions from the above- and
below-lying states. The quasi-classical expression for static polariz-
ability has the form [36]:

2
pim(w < n™3) = 14n® (1 - m—)

12
=1 1—¢?
X 25_2 [Jf(se) + = Jf(se)] , (2.33)
s=1
where ¢ = /1 — (I/7)? is a quantity analogical to the orbital eccen-

tricity of the classical motion of electron, 7 = 2nn'/(n —n') is the
effective principle quantum number, Jg(z) is the Bessel function. In
equation (2.33) the nuclear charge is set to unity. For m =1 =0
Eqn. (2.34) yields ay00 ~ 0.6n°.

For highly excited states of complex atoms, the results ob-
tained remain valid if | > 2, when the quantum defect is negligi-
ble [36]. In the opposite case of small quantum numbers [, no com-
pensation of contributions to the polarizability for a given highly ex-
cited level from above- and below-lying levels occurs. So the dynamic
polarizability turns out to be proportional to the seventh power of
the principle quantum number. For example, for a spherically sym-
metric state of an atom (I = m = 0) one can obtain the following
expression:

3nTo

Appo = m, 0 =101 —dg, (234)

where 01 are quantum defects of states with [ =0,1.
The dynamic polarizability of the Rydberg states averaged
over angular quantum numbers was studied in paper [37] using the
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Kramers approximation for oscillator strengths. The general expres-
sion for (a(w)),,, is given via elementary functions. This expression,
in particular can be used to derive the simple formula for the static
polarizability of a Rydberg atom:

15n5 + 21 nt
a(0) = — szt (2.35)
To summarize, we can stress the efficiency of the atomic plasma,
model in calculations of most important characteristics of the atom,
such as static and dynamic polarizability which play a key role in
radiative-collisional processes with participation of heavy atoms and
ions. Of course, as with any statistical model, the plasma model
of the atom does not take into account details of the polarization
properties which are due to the shell-like atomic structure and other
quantum effects. Nevertheless, this model describes satisfactorily the
shell-averaged atomic characteristics which quite often are sufficient
to consider in the observed plasma effects associated, as a rule, with
such characteristics. In view of the approximate character of plasma
models, a more rigorous theory frequently yields practically less ac-
curate results than the approximate models based on the physical
intuition. The LPF Brandt— Lundqvist model is one such models
and will be widely used in calculations below.

3. Static and polarization radiative channels
in collision of charged particles with atoms
and plasmas

3.1. General consideration for bremsstrahlung of fast
particles on atom

A consistent quantum-electrodynamic treatment of PBR of a
relativistic incident particle (IP) on a multielectron atom is com-
plicated by the need to include into the relativistic formalism the
interaction between atomic electrons, and also by the problem of
summation over negative energy states in the many-electron system.
At the same time, the calculation can be essentially simplified for
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non-relativistic atomic electrons if a non-relativistic atomic Hamil-
tonian is used from the very beginning and the incident particle is
substituted by electromagnetic field it produces.

Let us ground the possibility of such a substitution from gen-
eral principles of quantum electrodynamics. Let the field operator
of the free IP ¢(z) (z = {t,r}) satisfy the Dirac equation (in units
h=c=1):

(yp —mo) ¢(z) = 0. (3.1)

We shall assume that the operator of an electron— positron field of

atomic electrons 1)(z) satisfies the Dirac equation with the interac-
tion:

[fy (p +e A% (z) + eAae) - m] P(z) =0 (3.2)

where A®™t(z) is the potential of the external field of the nucleus,
A?¢(x) is the operator of the electromagnetic field produced by ato-
mic electrons that satisfies the Maxwell equation:

8”9, A% H(z) — 919, A% () = dm e’ (z) (3.3)

where 7”(z) = 9(x)~” ¢(z) is the operator of the atomic electron
current.

Thus the interaction between atomic electrons is assumed to
be taken into account in v (z). The state vector of a system of
fields (atomic electrons, incident particle, electromagnetic field) can
be represented as the product: |®;) = |7)|¢;)|nkes), where |j) is
the vector of state of interacting atomic electrons, |¢;) the vector
of state of the free incident particle, |nk,) the vector of state of
the electromagnetic field. The equation for |®) in the interaction
representation takes into account the interaction of currents produced
by the incident and atomic particles with electromagnetic field:

i0|®) /0t = /dr [eoj”(x) — ej”(:r)] Ay (z)|®),

SV (2) = o(x) 7" ().
Hence the scattering matrix S can be written in the standard form:

S =T exp {—i /dx Ay (z) [eo JV(z) — ej”(x)]} (3.4)

where T stands for the chronological ordering.
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The PBR amplitude that includes interaction between incident
and atomic particles both between themselves and with a electromag-
netic field, in the lowest order of the perturbation theory is described
by the third term in expansion of the scattering operator S (z; =1):

A~

S5 = (=i)® e /d1d2d3T{fly(1)j”(1)flu(2)j“(2) ANB3)T*3)}.

(3.5)
In obtaining this formula we have reduced the similar terms arisen
due to permutation of the integration variables. Below we shall as-
sume for simplicity that there is no exchange between the incident
particle and atomic electrons. Using the commutative property of
the corresponding operators expression (3.5) can be recasted using
the photon field motion operator (propagator):

A~

Sy = (—i)? / d1d2 A,(1) T{%5" (1) 7 (2)} / d3 0D, (2,3) I (3)

R R (3.6)
where D5 (2,3) = iT(0|A,(2) Ax(3)|0) means the photon propaga-
tor.

Formula (3.6) still keeps one non-paired fl—operator, which
corresponds to changing the electromagnetic field by one photon.

Calculating matrix element S3 using the initial and final states
of the system, we arrive at:

89 = (—i? /dl 2 AL, (1)L (1L,2) A%@). (37

Here the following operators are introduced:

Li*(1,2) = e (fIT{3* (1) 5(2) }13) (3.8)

—the relativistic analog of the electromagnetic field scattering tensor
by atom, and

A% @) =~ [ BDLEH @ Ble) (39

— the 4-potential of the virtual photon produced by the incident
particle in the scattering process |¢i) — |pr). Note that the vir-
tual photon potential A{(io) could be obtained from Maxwell equa-
tions (3.3) by substituting the matrix element of the IP transition
current {¢¢| J#(3) |;) on the right-hand side.
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Formula (3.7) for the PBR amplitude allows for interpretation

in terms of the amplitude of virtual photon A%O) scattering (conver-
sion) into the real photon on atomic electrons.

It is easy to demonstrate that the same expression for the
PBR amplitude can be derived from another form of the interaction
Hamiltonian:

V= —e / dr { A, (x) + AV)(2)} ¥ (). (3.10)

Here the incident particle is substituted by the electromagnetic field
A%O) it generates and thus is excluded from consideration as addi-

tional dynamic degree of freedom. The field A%O) can be considered
known from Eqn. (3.9); this is the so-called defined current approxi-
mation [38]. In this approximation the PBR amplitude can be calcu-
lated in the standard way in the 2™ order of the perturbation theory.
After calculating the corresponding matrix element we obtain:

Spa" = (=i)? [ dLa2 i, {1 3 @)} i) AP 2).
(3.11)
Comparison of Eqn. (3.7) with (3.11) yields

pol __ qr pol
Sia =528 -

Thus the PBR amplitude can be calculated by substituting the
incident particle by the field it produces using Eqn. (3.9). Then in
the considered here case of non-relativistic atomic electrons the only
relativistic degree of freedom, the incident particle, will be excluded
by such a substitution, and non-relativistic formalism for the BR
amplitude computation can be applied.

Note that the substitution of a particle by its field is widely
used also for the BR calculation in the Bethe — Heitler approximation
by the equivalent photon method, when the atom’s field in the IP rest
frame is substituted by some equivalent photons which are Compton-
scattered on the incident particle into the bremsstrahlung photons.

Let us substitute the IP by its field to calculate the PBR am-
plitude for a non-relativistic multielectron atom (Z < 137), ignor-
ing the exchange between the incident and bound electrons. We use
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the axial gauge for the electromagnetic potential (A = 0). The
non-relativistic Hamiltonian of the atomic electron perturbation by
electromagnetic field has the form:

—Z{pj I'Jy +A(I'J, )f)j—i-eAQ(I'j,t)} (3_12)

where p; = -1V}, A = Arh 4 Ai(io) is the total vector — potential,
the operator AP describes the photon field (kz = wt—kr, w = Ik|)

/2
Aph Z W ek o Ck,o exp(—ikx) + ek - ck - exp(zkx)}

(3.13)
Here ey , is the photon polarization unitary vector, clt o Cko are the

creation and annihilation operators. Ai(io) is given by formula (3.9)
and is the external field produced by the incident particle.
Passing to the interaction representation

Vins = exp(iHyt)V exp(—iH,t)

the scattering operator reads:

S =T exp {—i / Vint () dt} . (3.14)

The contribution to the PBR amplitude in the lowest order of the
perturbation theory (in the second order of the electron charge) is
due to the first and the second terms of expansion S. The zeroth
term of this expansion, unity, corresponds obviously to a steady-
state of the system. In the first-order term the contribution to the
process is due to the term containing the square of the total vector —
potential; in the second-order term, it is due to the term containing
f)A + Af). According to the PBR physical picture, it is necessary
to retain the terms including the mixed product of Aph and Aéo).
Thus the matrix element of the process takes the form:

1 1 2
st = 5 + 5
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where

0
() _ '(<I>|/dte (z'Ht)i
Sk —i (®y xp(iHat) 5 —

N
x S 2 AP (v, 1) AL (v, 1) exp(—iHat) |[®:) . (3.15)
j=1

Here |®;) = |j) |nk,o), because the variables related the incident par-

ticle have already been accounted for in A%O) . Thus from Eqn. (3.15)
we obtain

sy = —2m5(ef+Ef+w—si—Ei)
2w ) L€’
X () — eka_Aigi (q1) f|2exp zqrj)|z)5 (3.15a)
j=1

where A%O) (q1) is the spatial-time Fourier-image of the incident par-
ticle field calculated on the four-vector q; = {ef — &i, pr — pi}. We

neglect spin effects. For S () we obtain the analogical expression:

S (@7 [[ v Vi) Vi)l @) . (316

After simple transformations S( ) is reduced to the form:

5t = —e2na(aB) | 2 g by A0
x (5] [ dr explion)j'0on) @) (3.16a)

where
iUk, 7) =exp(iH,7)
1 al ~1 . . N .
X — {pj exp(—ikr;) + exp(—zkrj)pj} exp(—iHyT)

2mj:1

is the spatial Fourier-image of the atomic electron current operator
in the interaction representation.
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Summing Sél) and Sg) , we obtain the PBR amplitude in the

form:
SEOI = 2mid(es+ By +w—¢ — E) (q?)Q
2, R .
X\ ol Agg((h) (Fle" (k,an)|i) (3.17)

0
qp = E&f — &

In equation (3.17) ¢%(k,q;) is the operator of electromagnetic field
scattering on atom in the non-relativistic (by atomic electrons) ap-
proximation, which can be recasted to the form:

éls(ka ql) =

X [zm / dr exp(iwt) T {jl(k,T)js(Q1,0)} — " na(q)| . (3.18)

—00

N
Here 7(q) = Y_ exp(—iqr;j) is the Fourier image of the atomic elec-
i=

tron density operator.

Formula (3.17) for the PBR amplitude corresponds to the PBR
interpretation as being the incident particle proper field scattering on
the atomic electrons into the bremsstrahlung photon.

Analysis of the initial relativistic expression from which Eqn.
(3.18) follows confirms that the first term in the squared brackets
in (3.18) comes from the sum over the positive part of the atomic
electron spectrum and describes the electromagnetic field scattering
on the atomic electron current. The second term appears after re-
ducing the sum over negative energy spectrum states and describes
the field scattering on the atomic electron charge.

Let us write the matrix element c¥(k,q;) through the sum
over intermediate states of atomic electrons:

e2

m(q})?
T )dni(ar) 55, (a1)7n (k)
wep +w +10 Win — w410

cé’f(kvql) =

e

—gls nfi(q)} . (3.19)
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In the particular case of a spherically-symmetric state |i) for f =1,
k =q; =0, Eqn. (3.19) gives the well-known expression for atom’s
dipole polarizability:

2 A
& (a1 k — 0) = afw) o = g S 3 S (3.20)

— w2
mnwmw

Here f;, is the oscillator strength for the transition ¢ — n. Equa-
tions (3.17) - (3.20) suppose the detuning off the resonance A be
sufficiently large so that A = |w - wf(i)n| > Ly(iyn, where Ty, is
the width of the transition n — f(i). Otherwise the line width of the
corresponding transitions should be properly accounted for in these
expressions.

Now let us calculate the amplitude of the static (“traditional”)
bremsstrahlung radiation produced by photon emission of the inci-
dent particle, including the possible excitation of atomic electrons.
Here again we use the bremsstrahlung radiation interpretation in
terms of scattering of virtual photons into real. Now virtual pho-
tons are generated by atom (nucleus and bound electrons). Atoms at
rest and non-relativistic atomic electrons mainly produce longitudi-
nal virtual photons. In this case it is convenient to use the Coulomb
gauge of the electromagnetic potential (div A = 0), since then only
its time component can be considered. Spatial components in the
Coulomb gauge describe the transversal part of the field and are small
in the case under study. The time component of the virtual photon
potential produced by an atom, according to Eqn. (3.9), reads

Ay =~ [ a1’ Do (1, 1) (17 ) (3.21)

. N

where J%(1) = Zed(ry —ry) —e Y. §(r; —r;) is the atomic charge
i=1

density operator in the coordinate representation, ry is the radius—

vector of the nucleus. Applying standard rules of quantum electro-
dynamics it is easy to obtain the static bremsstrahlung radiation
amplitude:

2
S5t = —2miy | UW e% o L (DL k)Ag(q)é(ef +E+w—¢ — E).
(3.22)
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Here the following notations are introduced:

T =

or { Y DY + 0k +mo

iy — vk +m Uj
0y +70P1’)’ ¥ 0 V} i

Vaer U (e + B)Z—mg i — k2 —my | Ve
(3.23)
Af(a) = (47/a%) {0 Ze — ens(a)}. (3.24)

Thus the total BR amplitude of a relativistic incident particle on a
non-relativistic atom (Z < 137) including polarization mechanism
and the possible excitation of atomic electrons has the form

SPr = S5t 4 5k (3.25)

where Sgd and S§' are given by Eqns (3.17) and (3.22), respectively.
Using expressions obtained for amplitudes, we write the BR
spectral cross section in the form
Br . 2
do®" (w) Z ko dq ‘Sﬁ (a;pf,i,k)‘
—_— im
dw |p1| 271' 3T 500 T

(3.26)

Here df2y is the elementary solid angle along the photon wave vector
direction k, T is the normalization parameter which has the sense of
the time, the summation is made over the emitted photon polariza-
tions (o) and final states of the atom ( f). Below we shall assume a
Born incident particle with non-degenerate initial state.

Bearing in mind the explicit form of Sgr , Eqn. (3.26) can be
rewritten in the form:

doBr( 9 ko dq
— = 270 (AE
W ol = s e E
* 9 o 4T 012 Is A0 2
X |€koy {60 T ?(Ze% —engi(q)) + (q1)7cy A (3.27)
that includes three terms:
Br st pol int
do®" (w) :da +da +da ' (3.28)

dw dw dw dw

The last term in Eqn. (3.28) describes interference between static
and polarization terms in BR; T¢ and c%s are given by Equns (3.23)
and (3.19), correspondingly.
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Below we shall assume the IP motion to be slightly perturbed
by bremsstrahlung radiation, i.e. that |qi| < |ps;|. Then AJ reads

(c=1):
drey v’ —q

¢ (") -aq
Here vg is the incident particle velocity. In the same approximation,
the function T (see definition (3.23)) reads:

A (g) = 5, ¢’ =avo. (3.29)

q1

T— W
mo 7y (w — kvo)

v =¢i/myg. (3.30)

Expression (3.23) is the most general form for the bremsstrah-
lung radiation cross section on an atom. Neglecting internal degrees
of freedom of IP and atomic nucleus, it describes the atomic electron
contribution to the BR process. The static BR cross section can be
found from Eqn. (3.23) after simple transformations:

Ly
dw ’U()

(il(Z = n(=q)) (Z — n(q,1))li) . (3.31)

| 606

If the excitation energy of atomic electrons can be disregarded com-
pared to the emitted photon frequency w, in Eqn. (3.31) we can put
7(q,t) ~ n(q,0) to obtain:

do®* dQy dq 5 ehe? -
dw ’UO (2m)3 5( +w) [nT] o2 (i[|Z = n(q)]|3),
k
= (3.32)

In deriving Eqn. (3.32) we have used the equality > kol Ckos =
ag

(5[ s —NMing.

Equation (3.32) coincides with the result obtained by Lamb
and Wheeler [39], who were the first to study consistently the contri-
bution to the static BR due to atomic electrons.

In the case of a heavy (mo > m) IP, the first term under
the modulus sign in Eqn. (3.27) can be neglected compared to the
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second term, because |T| oc 1/mg, while A (q) and é%(k,q1) are
independent of mass. Then the total BR cross section on an atom is
reduced to the PBR cross section, for which from Eqn. (3.26) we find:

dngI ko dq
dw - Uo (271') (015 — mimy) (Q?)4 Ag,é"(ql) Ag’l' (a1)
% /dteiq t<l|éSl,*(0)él8’(t)|’L> (333)

Here we put
el (t) = exp(i Hot) ¢5(0) exp(—i Hy t). (3.34)

Consider now PBR without atomic excitation (elastic PBR).
Its cross section is given by the addend with f = ¢ in the second
term under the modulus sign in Eqn. (3.27):

do??’! Ay d
o = o T G (@) A7 () A (@)

x 8(af + w) (ife""i)(ile" i) (3.35)

Inside the frequency range w < p, vy (pa = Z /3 me? is the charac-
teristic atomic momentum) the main contribution to the process is
due to moduli |q;| < p, permitted by energy conservation. In the
opposite case (when |q;| > p,) PBR with excitation and ionization
of atom should prevail. So in this case the dipole approximation for
the scattering tensor can be applied:

cé?(k,ql) — gth a;(w) 0 (pa — |ai]) (3.36)

and instead of Eqn. (3.35) we obtain

dofy” df dq 2 9
SRS (0) 0 B -

i~ o ot AV @] 660 0~ lau]) [ eite)]

Y Patos (3.37)

The approximation used corresponds to the Born— Bethe ap-
proximation in theory of atomic excitation by electronic collision.
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Equation (3.37) yields frequency-angular distribution of elastic PBR,
in the given frequency range

ol (w,0) 26} dw

‘2
dw ’U(Q) w

‘wQ ai(w)| (1 + cos® ¥) sin dd In <m> .

w
(3.38)

In the derivation of Eqn. (3.38) we have neglected terms of the order
of unity compared to the large logarithm.

Equation (3.38) leads to consequences: (a) in contrast to static
BR, polarization BR of an ultra-relativistic IP (y > 1) at frequencies
w < pavp is not narrow-beamed and has a dipole-like angular distri-
bution; and (b) the PBR cross section increases logarithmically with
the IP energy increase in the ultra-relativistic limit at w < p,vg.

These characteristic features of the relativistic IP PBR allows
a simple physical interpretation. The logarithmic PBR cross sec-
tion growth with the IP energy is due to peculiarities of the proper
electromagnetic field of the relativistic charged particle. The spatial
distribution of the potential of this field at the frequency w is given
by the formula

(0) Y i
A" (w) o exp <z ” (z —vot) 1700> . (3.39)
Here z,p are cylindric coordinates of the IP field. Equation (3.39)
suggests that the transversal size of the field is of the order of ppax =
vvo/w, and correspondingly the minimum transversal transmitted
momentum is |q |,;, = w/yvo. Hence the spectral PBR cross sec-
tion (in the Born approximation) doP®(w) oc In (|aL|ya/ 190 i)
entails the second PBR feature noted above. In the case of static BR
on neutral atoms, the maximum size of the field scattering on the IP
into a bremsstrahlung photon is determined by the atomic size.

For elastic PBR inside the frequency range I < w < m ([ is
the atom’s ionization potential), the high frequency asymptotic for
the scattering operator can be used:

2

e s, 44
ﬁn(q){é +—}, I<w<m. (3.40)

~ls
k, ~ —
¢k ar) m(q? 2mw

Formula (3.40) is obtained by expanding the matrix element clfsi

(3.19) in a power series of the ratio |wjn|/w ( j = f,i). Here the
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terms in the sum over intermediate states with |wj,| > w provide
minor contribution to clfsi for w > I. Substituting Eqn. (3.40)
into (3.33) we find

2
do?®  w [ddq o, o, (€ )
dw %/ 2n) 6(q") m Inii(q)l

2

n, (A(O)(q) 42 (qlA(O)(ql)))} ,

X

2mw

I<w<<m. (3.41)

The quantity n;(q) is the (static) form factor of the atomic core in
the state |i).

Now we calculate the cross section for PBR with excitation
(including ionization) of atom for m > w > I. Substituting into
Eqn. (3.33) expression for ¢ (3.40), we obtain

¥ w [ dQdg ()’
dw v 2m)* \m

2mw

2
x ln (A(O)((_h) +M>] Silq).  (3.42)

Here we introduced the quantity
1 o)
Sile) = 5= [ dt explia®) Ga(-a) g, ), (343)
—00

that we shall call the dynamic form factor (DFF) in accordance with
the terminology accepted for description of effects in a medium.

The simplest analytical approximation for S;;(¢) has the form

2

Sii(q) = 0 (lq] —pa) 0 (qo + ;—;) N 460 (pa—lql) 6(¢°) N?. (3.44)



Plasma models of atom 37

Combining Eqns (3.42) and (3.44), the PBR spectral cross
section in the approximation considered can be derived in the form

d pol 16e2et
O3 _ 6606 9(pa/00 _ w) [NQ In ('}’an0> + Nln <m0'00>]

dw 3m2v2 w Pa
Ymoug
+ 6(w — pavo) N In — | (3.45)

Note that the total PBR cross section (including excitation
and ionization of atom) (3.45) allows the correct limiting transition to
the case Z = 0, which corresponds to setting p, = 0 in Eqn. (3.45).
Then the term in the square brackets describing “elastic” PBR. dis-
appears and the remaining last term in the curly brackets describes
radiation of a slow free recoil electron in collision with a relativis-
tic charged particle, which complies with the physical picture of the
phenomenon.

3.2. The dynamic form factor formalism
in description of radiation from fast particles
in a plasma

In order to calculate BR generated by a fast particle on an ion
in plasma we shall use the problem setting characteristic for PBR
on atom (see Sect. 3.1). Consider emission of a transversal photon
by medium electrons, both free and bound, during a rapid IP in-
elastic scattering. The virtual photon scattering into real ones on
the polarization charge around IP will be neglected. This is cor-
rect for a non-relativistic plasma at frequencies w > wpe, v > vre
(wpe is the electron plasma density, vre is the thermal velocity of
plasma electrons). Then IP plays the role of the virtual photon
“source” and can be substituted, as was shown in the previous sec-
tion, by the corresponding electromagnetic field (the IP initial and
final states are assumed to be known) according to Eqn. (3.9). Next,
the IP motion is supposed to be weakly perturbed during BR process:
lai| = |pr — pil € |pj,f| (pir is the initial and final IP momenta, re-
spectively), so the transition current density reads (the normalization
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coefficient is set unity)
J§ = vy (3.46)

where v is the incident particle 4-velocity.

Recall that polarization affects the internal electromagnetic
field of the medium, which is “coated”. To account for this effect, we
substitute the photon propagator in a vacuum in Eqn. (3.9) by the
photon propagator in a medium, whose Fourier-image for an isotropic
medium in the axial gauge (Ag = 0) is given by the expression [40]:

4m dman (q0)2 ( dman )
Dmn = mn 4
@ (¢°)? {q%é - (¢°)%el — g ’ q? (3.47)

where m,n=1, 2, 3; &tf], 52 are the longitudinal and transversal

components of medium’s dielectric permeability on the ¢ = {¢°, q}
4-vector. Note that propagator (3.47) coincides, to within a factor,
with the expression for the linear Green function for Maxwell’s equa-
tions. Equation (3.47) for the photon propagator in the medium is
linked to the medium’s polarization Py, (¢) by the relationship

Dy (q) = D)1 (q) — Pan(q) /47 . (3.48)

mn

Introducing the longitudinal and transversal components of dielectric
permeability [40] (the summation is assumed over repeating indexes):

551 =1- qnqunm(q)/qQ(qo)2 ) (3.49)

62 =1— Pu(q) (5mn - Qan/QQ)/Q (q0)2 (3.50)

the polarization tensor of the medium reads

Prn(g) = (¢°)? [5mn —e quQm s <6nm - q’;é”)] . (351)

Equation (3.48) yields the relationship between photon propagator in
the medium (3.47) and dielectric tensor components (3.49) - (3.50).
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The polarization operator for non-relativistic medium particles
and |q| < m can be cast in the form:

2

an(q) — 47-‘- {67’1,777, Z ea Ne

«Q

(0% eadn(@)ls)(s| X ear g (a)]0)
al
+ ; wos + qO + 40

+c.c. (3.52)

where « is the particle sort index, n, the number density of particles
a, jl(q) is the Cartesian component of the spatial Fourier-image of
the current density operator of particles «, |0,s) are many-particle
wave functions of the system’s ground and excited states. Equa-
tion (3.52) is valid for zero temperature T'= 0; for 7' > 0 Eqn. (3.52)
should be averaged over the initial state. If interaction between dif-
ferent sorts of particles can be neglected in the zero approximation,
then the equality holds Py,(¢) = Y. P, and the dielectric perme-
«

ability tensor components due to particles a can be obtained from
Eqns (3.49), (3.50), and (3.52):

Ok
471'62 20)8’5 nOs (q)‘
o) _ 1 o 2
e =1———=5—=13m — +q g ¢, 3.53
q ()22 azs: w2, — (¢°)2 q Na (3.53)
o) 9 e? 208, ity (a)] ‘2 ,
€ =1—-—7<m +29°n . (3.54
q ()22 o - Wi, — ()2 q Na (3.54)

Here wgs is the excitation energy of the system of particles, n =
> e *qT ig the spatial Fourier-components of the particle density
i

operator.

Since the quantum-mechanical averaging is assumed in Eqns
(3.53), (3.54) (and not the averaging over physically infinitesimal vol-
ume), the condition |q| < n'/3, which is usually employed in the clas-
sical approach, is relaxed and the dielectric permeability tensor com-
ponents are determined for all values of q at which non-relativistic
treatment of the medium stays valid.
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Thus the electromagnetic potential of the virtual photon gen-
erated by the incident particle in the scattering (p; — pr) is

A (z) = AO(q) exp [i(¢"t —ar)], AW (g) = —€o Dyun(g) Von -
(3.55)
The total electromagnetic field perturbing plasma electrons
in the bremsstrahlung process is the sum of the virtual photon
field (3.53) and the free (transversal) photon field, which has the
vector — potential in the form

Aph Z /27‘( ekaak ez(kr wkt)+ek ak e—z(kr—wzt)}_

(3.56)
Here o,k are the polarization index and wave vector of the pho-
ton, respectively, ey, is the polarization unit vector, &Ig,dka are
creation — annihilation operators for photons in the medium, and wj,
is the frequency of the transversal photon with the wave vector k
determined by the dispersion law:

k
L
€k

(3.57)

Let us write down the explicit expression for 52 with account for the
bound electrons and ions. Neglecting interaction between plasma and
bound electrons, we have

ici(w) . (3.58)

Here «j(w) is the dynamic polarizability of ionic cores at the fre-
quency w, and n; is the ionic number density. In deriving Eqn. (3.58)
we have used the condition w > |k|vpe. The Doppler effect in ac-
counting for the bound electron contribution to dielectric permeabil-
ity (3.58) has been ignored.

The Hamiltonian of interaction between non-relativistic plas-
ma electrons and electromagnetic field (using the axial gauge for the
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electromagnetic potential) has the form

o €

5 > {BiA). 1)+ Alrj, 1) + e A2(x, 1)},

(3.59)
A=AO L APh p. = iV,.

Here the summation is being made over both plasma and bound
electrons of ionic cores.

The amplitude of the process under consideration is obtained
in the same way as in Sect. 3.1, in the second order of the perturbation
theory on the interaction f)A + Af) and in the first order on the
interaction A2, including “cross-over” terms A(0) APh:

e2

Mﬁ(kaaaQ) = \/ﬂg
) {m Z[(flei‘m (3 +30) 1) sl (30 +35,) A8

+ c.c.
Qps +w+iTp/2

+ef A (f| AP 4 albli) } (3.60)

where Jp b b, Aﬁl b are the spatial Fourier-images of the current den-

sity and charge operators for plasma (index pl) and bound electrons
(index b) determined above; |f,s,i) are many-particle wave func-
tions, €);; are excitation energies with account for the Doppler ef-
fect, and I';; are the line widths for transitions ¢ — j. We assume
that the subsystem of bound electrons of each ions weakly interacts
with plasma electrons and with electrons of neighboring ions (due to
the sufficiently rarefied plasma density) so that the wave functions
of bound electrons of an individual ion are determined only by the
given ion’s parameters. Moreover, plasma electrons are supposed to
interact with ions as point-like objects.

Bearing in mind the above considerations, the plasma wave
function can be presented as the product

(I‘l, ]7p(71) rl, H’l/) (361)
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Here r; is the radius— vector of the [-th plasma electron, R; is
the radius— vector of the j-th ion barycenter, p& is the radius—
vector from the «-th electron, belonging to the j-th ion, to ion’s
barycenter, ®, is the wave function of interacting plasma electrons
and ions, and ng ) are the wave functions of the electronip sub-
system of the j-the ion. Systems of functions ®; and zﬁgj) (for
each j) are orthonormalized and form a complete set. For simplic-
ity, further we assume that the bound electron subsystem does not
change its state during bremsstrahlung: wgi = gf = 11 exp(ip1j)
(g1 is the phase of the electron wave function of the j-th ion in the
state 11 ).

Substituting Eqn. (3.61) into (3.60), we find:

Mf(il’l)(k,a,q)=\/2_{ (@f| A(q) |®i) Ohm (3.62)

<I>f|Ze i R Jc (k qi,w — ka)|<I))}ekahA£n)m

(

Here Chm) (k,q1,w — kv’) is the diagonal matrix element of the
scattering operator for an electromagnetic field on the j-th ion’s
electrons.

The account for Doppler-effect related terms in the energy de-
nominators can be significant for non-relativistic plasma electrons
near resonance frequencies of the bremsstrahlung photons. The Dop-
pler effect can be neglected in the opposite case (for sufficiently large
detunings of the resonance).

Ignoring the excitation energy of bound electrons in absorption
of the momentum k compared to the photon frequency, Eqn. (3.62)
can be recasted in the form

M (k,0.q) = Var {Enf(f)( ) = ™ O, @) i (a >}

X ey p AL (3.63)

q1,m
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where

n{ () = (/] S exp(—iqr))|®;),
!

ni (@) = (][] exp(~iqR ) @)
J

are the matrix elements of the Fourier-images of the density operators
for plasma electrons and ions, respectively.

Let us now calculate the differential cross section for brems-
strahlung of plasma electrons and ions, summed over all final states
of the system of delocalized particles and averaged over their initial
states (plasma is assumed to be in thermodynamic equilibrium):

2
doyit(k,q) = vo Z 6(er —ei+w+aqiv)
fi,o

2 wdw dy dq

w(i) | M{ (k, 0, q)| 2ny

(3.64)

where w(i) = exp (—51/T)/Z exp (—es/T), € is the plasma particle
S

energy. Substituting Eqn. (3.63) into (3.64) and summing over f,i
we obtain:

\)

2
doys (k,q) = (;) (600 — ) AD (1) A (1)

P
9 Z(k7q wdwkodq Z (k. q)

hlmn hlmn

2\ 2 .
_ (‘i) S (q) Opn 01 + (¢°)* $D(q) e efa”

m

2 .
-2 (qo)2 % Sin S(eD) (q) Re(cgllm’l)) . (3.65)

Here S©)(q), SW(q), S©)(q) are, respectively, the dynamic form
factors of plasma electrons, ions, and the mixed electron —ion dynamic
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form factor determined by the expression:

5@ (g / a1 (q, 00 (~q,0)) . (3.66)
Sita) = 5 [ are (i@ a0 (-q.0)),  (.67)
S(ei)(q o /dtelq t< (e)( )ﬁ(l)( q’())> (3.68)

Here 7(q,t) = exp (ZI:It) n(q) exp (—iI:It), H is the Hamilto-
nian of the delocalized particles. The angular brackets mean both
quantum-mechanical and statistical averaging according to the rule
(...)=8p (e‘ﬁ/T .. ) /Sp (e‘ﬁ/T) , where the spur is taken over the
complete set of functions ®,. Note that thermodynamic averaging is
essential here since delocalized particles have a continuum spectrum.

Let us comment on Eqn. (3.65). Here we can single out three
terms proportional to the electron, ion, and mixed form factors, re-
spectively. The first term describes the process of scattering of the
IP electromagnetic field, A(®(q), into a bremsstrahlung photon on
plasma electrons, the second term describes the same process on
plasma ions, and the third is the interference term. The dynamic form
factors introduced by Eqns (3.66) — (3.68) represent Fourier-images of
the spatial-temporal correlation functions density —density for differ-
ent plasma components (see [41]). They characterize the efficiency
of the energy —momentum absorption by fluctuating plasma via dif-
ferent plasma components. It is important to stress that such de-
termined dynamic form factors describe interactions between plasma
electrons and ions, for example their mutual screening, which is taken
into account in the structure of the wave function ®4(r;,R;). Note
that the dynamic form factor appears in some other problems (energy
losses by fast particles in a medium, light scattering in a medium,
X-ray diffraction, etc.). It is a well-studied quantity so its use in
calculating the PBR cross sections seems to be quite relevant.
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Calculations of the PBR cross section of a fast particle in a
plasma necessitate the knowledge of the explicit dependence of dy-
namic form factors of the plasma components on the transmitted
4-vector q. To this end, we express them through characteristics of
non-interacting particles— the dielectric permeability tensor compo-
nents, using the means described in [42]. This method is based on the
fact that interaction between plasma electrons and ions is weak and
can be taken into account by the perturbation theory. Technically, in
order to calculate the dynamic form factor the fluctuation-dissipative
theorem is employed, linking the dynamic form factor with the linear
response function of the plasma components on some external field.
According to this theorem, we have for electrons

Im (Fee(q))

9 = me? (exp (—¢°/T) —1)

(3.69)

Here Fgc(q) is the linear response function of the electron plasma
component on a fictive external potential that acts only on the plasma,
electrons. This function can be expressed (see [42] for more detail)
through the response function of the electron and ion components on
the total potential, f.;(¢). As a result, interaction between plasma
components proves to be fully accounted for and Fe.(q) takes the
form

5e(q> [1- 4% Bi(o)]
—IF (Bela) + Bil0)

q
Substituting Eqn. (3.70) into (3.69) yields the dynamic form factor
in the form

Fee(q) =

(3.70)

-4 6ifa) [ 2| st
—L— | Im(Be(q) + () |22 m(Bi(e))
5@ (g) = 5 5 (3.71)
me? (exp (—¢°/T) — 1)
Here A
~lla U ~ ~l(a
£l ):1_?%@, gl=Y gl (3.72)

where the “tilde” over the dielectric permeability sign means that the
contribution from bound electrons is ignored.
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The imaginary parts of the response functions on the total
potential in plasma, which enter Eqn. (3.71), read [42]:

exp [— 0\2 2,02
m(fa(q) = egm (e‘qo/T - 1) ng [\/(2%)|q/|iq ral (3.73)
Ta

With account for Eqns (3.73) and (3.71), we finally arrive at:

N2
5@ (g) = — L R i@) p|— (¢°)?
\/27r|q| UTe éé 2q2fv%e
(3.74)
2
Z |1-" l (¢)? ]}
- = eXp | =5 2.2
VT g 2 q-viy

Analogically, for the form factor of ions we have

2
50(g) — - 1 éé(e) - (¢°)2
V2m|q| | vri 5q 2 qQ’U’%l
~1(0) |2 0)2
1 |1-¢
Z; vre él xp l 2 21)%6] } (375)

~1(i) |2 0\2
(ei) — e 1 1- q (q )
S (q) /_27'(' |q| { VT Zl é.é exp 9 qQ'U%e
~l(e) |2 0\2
1 11-¢4 (q")
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Now let us give a physical interpretation to expressions
(3.74) - (3.76). Consider as an example the form factor for elec-
trons S(®)(g). It can be represented in the convenient form
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Here |6ne,i|z are squares of thermal fluctuations of electron and ion

plasma components on the 4-vector ¢, e Zﬁflf is the effective electron
charge that screens the current in plasma on the same 4-vector, and
e 12&5 is the effective charge of plasma electron including the screening
action from other charges.

Such a representation for the electron dynamic form factor
allows it to be interpreted as the sum of squares of thermal fluctu-
ations of electron number density of two types. The first term in
Eqgn. (3.77) describes fluctuations due to separate electrons screened
by other charges in plasma. The second term describes the electron
charge that screens the ion plasma component charge fluctuations.
A similar interpretation can be given to the ion dynamic form fac-
tor as well. The mixed electron—ion dynamic form factor represents
the sum of charge fluctuations of each plasma components that screen
charge fluctuations of the opposite sign. The zeros of the longitudinal
part of the dielectric permeability in the above formulas correspond
to charge fluctuations due to the appearance of collective excitations
(quasi-particles) in plasma. In the last case, the momentum —energy
excess induced by bremsstrahlung is transmitted to the collective ex-
citations of the medium.

4. Plasma models for photoionization
of atoms and ions

4.1. Application of dynamic polarizability models
to calculations of the photoeffect
on complex atoms

First we consider the application of the classical models to cal-
culate the photoeffect cross section on multielectron atoms. The sim-
plest approach is based on using Eqns (2.2) and (2.8) that represent
the atom’s dynamic polarizability as the electron density functional in
the local plasma density approximation. This method was suggested
in [31] to take into account many-particle effects in photoabsorption
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as the alternative approach to the single-particle description of the
phenomenon. Its physical justification is expressed by equality (2.1):
the interaction of radiation with atomic electrons is localized at a
spatial point determined by the plasma resonance condition.

The photoabsorption cross section can be conveniently rep-
resented through the spectral distribution function of dipole excita-
tions:

2
o(w) = 2Tg(w), /g(w) dw = N . (4.1)

The second formula in Eqn. (4.1) represents the well-known sum rule.
The spectral function g(w) satisfies the equalities:

g(w) = me Mw—wy) = %w Im a(w). (4.2)

Here the first equality is the spectral function definition and the sec-
ond one follows from the optical theorem.

The spectral function corresponding to the dynamic polariz-
ability in form (2.2) can be written down as a spatial integral over
the radial electron density:

g(w) = /d3r n(r) §(w — wy(r)). (4.3)

Equality (4.3) is obtained from Eqn. (2.2) making use of the
Sokhotsky formula and the optical theorem.

Note that within the frames of the statistical model of atom
the photoionization and photoabsorption cross sections coincide due
to the absence of bound states in the approximation employed.

The presence of the delta-function in Eqn. (4.3) allows the ex-
plicit integration and with the use of Eqn. (4.1) we find the following
expression for the atomic photoionization cross section:

_ 472w n(ry)
B—L _ 2 w
7o )= T

(4.4)

Here r,, is the solution of Eqn. (2.1) corresponding to the distance at
which the plasma resonance occurs, the prime denotes differentiation
with respect to radius.
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For the electron density in the form like Eqn. (2.11), Eqn. (4.4)
can be recasted in the form revealing the scaling of the photoioniza-
tion cross section with respect to the reduced frequency v = w/Z:

BL< w>=97f4’/ o flzw) (4.5)

B—L —_ —
Uph (w) - Uph v=- 320 xl/ |f’($y)| ?

Z

where z, is the solution to the equation

v=/4x f(z). (4.6)

Equality (4.6) follows from Eqn. (2.1) with the account of Eqn. (2.11).

Based on Eqns (4.5) and (4.6), we now wish to analyze the
spectral cross section of photoionization using different statistical
models.

In addition to the Thomas—Fermi approximation for the nor-
malized electron density f (z =r/rrr) [Eqn. (2.10)], we shall con-
sider linear distribution (2.13), statistical Lenz —Jensen model (2.12),
and the exponential screening model in which

128
fexp(z) = 9? €

The exponential (4.7) and especially linear (2.13) screening ap-
proximations for multielectron neutral atoms are very crude. How-
ever they can be useful in some other cases. Here we consider these
approximations because on such a basis it is possible to construct
simple analytical expressions for the photoionization cross section.
Indeed, making use of Eqns (2.13) and (4.7), transcendental equa-
tion (4.6) can be easily solved, so it is possible to find the corre-
sponding photoionization cross sections from Eqn. (4.5):

o 97 76 6 3208 \2
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A characteristic feature of Eqns (4.8) and (4.9) is the presence
of the “cutoff frequency”. In the case of the linear electron den-
sity distribution, this frequency depends upon the reduced atomic
radius zg. The “cutoff frequency” appears as a result of the radial
electron density being bounded within some radius near the nucleus
in the linear and exponential screening models, so there is the radia-
tion frequency at which the plasma resonance conditions (2.1), (4.6)
are not satisfied.

In Figure 3 we show the results of calculations of the photo-
effect cross sections as a function of the reduced frequency obtained
in these models. As is seen from this figure, the Thomas— Fermi and
Lenz— Jensen distributions yield similar results for the photoeffect
cross sections. A slight difference is that in the low frequency region
the Lenz— Jensen model gives a somewhat lower value for the cross
section than the Thomas— Fermi model. This is due to the already
mentioned realistic decrease of the Lenz— Jensen electron density at
large distances from the nucleus. The photoionization cross section
obtained in the exponential screening model approximation (4.8) has
a sharp maximum at wr(figiﬁ’) ~ 887 eV.

More realistic electron distributions that take into account the
atomic shell-like structure, such as, for example, the Hartree — Fock
electron densities, leads to the appearance of the characteristic “o
cillations” in the spectral photoeffect cross section around the “mean
line” determined by the Thomas— Fermi and Lenz — Jensen distribu-
tions.

In paper [29], the atomic photoeffect cross sections were calcu-
lated for different modifications of the Brandt — Lundqvist approxima-
tions like Eqn. (2.8) and various forms of the dielectric permeability,
including the local dispersion taken in the form:

wp(r)
(g, w, 1) = ——2 (4.10)
FIEOE
Here vp(r) = (372n(r))'/3 is the local Fermi velocity of atomic

electrons. This account of the local dispersion of the atomic dielectric
permeability somewhat decreases the photoeffect cross section in the
low frequency range and increases it at high frequencies.
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Fig. 3. The photoeffect cross section in the
Brandt — Lundqvist local plasma approximation for
different statistical models of the electron den-
sity: I — the Thomas— Fermi model, 2 — the
Lenz— Jensen model, 8§ — the exponential screen-
ing model.

Besides, in [29] photoabsorption cross sections for ions with
different ionization degree were also computed using the Lenz-—
Jensen distribution. Analysis carried out in [29] revealed a signif-
icant decrease of the atomic photoeffect cross section at frequen-
cies w < Z Ry with increasing ionization degree (parameter ¢ =
(Z — No)/Z)), whereas at high frequencies w > 37 Ry the pho-
toionization cross section is virtually independent of ¢.

4.2. Approximate quantum methods
for photoabsorption cross section calculations

Along with essentially classical methods of accounting for
inter-particle correlations in the photoabsorption considered in the
previous section, some authors have developed quantum methods
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that take into account polarization many-particle effects. Within the
frames of these methods, the photoionization cross sections were cal-
culated using somewhat simplified approaches compared to consistent
quantum-mechanical treatment, such as RPEA [15].

One such method, based on the local electron density func-
tional formalism, was used in paper [27] for numerical calculations of
photoabsorption in the noble gas atoms and their static polarizabil-
ities. The calculations were simplified by introducing the local effec-
tive potential to find single-particle wave functions of the system’s
ground state. To this aim, generally non-local exchange-correlation
energy was calculated in the local density approximation according
to the equalities:

0.611

Vel ==

11.4 4
—0.0333In(1 —ar3(r)y=n"1(r).
w(1+75) g =no)

(4.11)

As a result, the solution of the corresponding equations turned out to
be not more complicated than the Hartree equation solution. Polari-
zation-correlation effects were taken into account by introducing the
self-consistent field in the form of the sum of external and induced
fields, which was a solution to the corresponding integral equation.
Note that in the RPEA calculations [15], the effective dipole mo-
ment D(w), describing many-particle correlations, was also a solu-
tion to an integral equation.

The results of photoabsorption cross section calculations made
in [27] proved in excellent agreement with the existing experimental
data. In addition, they demonstrated an important role of polariza-
tion many-particle effects in photoionization of atoms with completed
electronic shells. These effects lead (with exception of the neon atom)
to a significant shift of the photoionization cross section maximum to-
ward high frequencies, compared to the independent electron approx-
imation, in which the location of the maximum virtually coincides
with the threshold photon energy. For example, the photoionization
cross section maximum for the xenon atom near the 4d threshold is
shifted by about 2.5 Ry toward high frequencies. In this case, there
is no strong resonance due to (in the framework of the single-particle
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treatment) the transition from the 4d-subshell to virtual f-state in
the continuum.

The shift of the maximum photoionization cross section men-
tioned above is the consequence of a redistribution of the oscillator
strengths of atomic transitions from a near-threshold region to the
high frequency part of the spectrum due to the atomic core polariza-
tion. This polarization leads to a specific screening/de-screening of
the external field. An analysis of frequency —space dependencies of
the local self-consistent field indicated that there is a strong screening
of the external field in the low frequency wing of a photoabsorption
line at small distances from the nucleus, so that the vector of the self-
consistent field strength is directed oppositely to that of the induced
field. It is interesting that for all frequencies of the ionizing radiation
the “switching” of the screening regime to the “de-screening” as the
distance from the nucleus increases occurs at the local electron den-
sity maximum of the atomic subshell that mostly contributes to the
process cross section.

It is interesting to notice that the local electron density method
used in paper [27] predicts a smaller (by several electron — Volts) value
of the photoeffect threshold compared to what is actually observed.
It is important to stress that here the sum rule for the photoabsorp-
tion cross section is satisfied as the “non-physical” contribution to the
cross section from the continuum is compensated by ignoring the con-
tribution from the discrete spectrum adjacent to the photoionization
threshold. This fact is much more relevant to the above-mentioned
variants of the classical description of the atomic photoeffect. As
seen from Fig. 3, the Thomas— Fermi and Lenz— Jensen models for
the atomic electron density give photoionization cross section largely
extending to the low frequency region, although the sum rule for
the corresponding cross sections is respected. Within the frames of
these statistical models, the discrete atomic spectrum is totally ab-
sent so the “non-physical” region of the continuum below the pho-
toionization threshold models, to some degree, the contribution from
unaccounted-for bound states.

To conclude this section, we consider a simple quantum-me-
chanical model for atomic photoeffect, which admits an analytical
representation for the process [49]. From the formal viewpoint, this
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approach is based on the approximate operator equality

et (HotA)t giHot o =i t, Ay = %, (4.12)
T

which yields the following cross section:

27r22

/dt | —1A1t|¢> zwt (4‘13)

opn(w) =~

The representation of the cross section in form (4.13) is named in [49]
the “hybrid” approximation. It is quantum mechanical because of
the general operator approach and at the same time has some classic
features since the approximate commutation of the operator’s expo-
nents (4.12) is used.

Note that Eqn. (4.13) can be rewritten via the electron density
utilizing the following substitution:

lp(r)[2 = drxr?n(r). (4.14)

After integrating over time the remaining integral can be taken due
to the presence of the delta-function with the net result in the form:

8n? 7% 1 1
O'ph(UJ) = T mn <T‘ = \/—a) . (415)

Equation (4.15), in particular, yields the hydrogen-like high frequency
approximation for the photoionization cross section if n(r — 0) —
const .

Thus, like in the Brandt— Lundqvist approximation (4.4), the
photoionization cross section in the Rost hybrid approximation [49]
is an electron density functional. However, in this case the character-
istic radiation scale 1, is determined not by plasma resonance condi-
tion (2.1) but by the difference of the atomic Hamiltonians with or-
bital numbers differed (in accordance with the dipole selection rules)
by unity:

w=Hy(r) — Ho(r) . (4.16)

Equation (4.16) directly follows from Eqn. (4.12) and the en-
ergy conservation law.



Plasma models of atom 55

Based on Eqn. (4.16), we can suggest a physical interpretation
to the Rost approximation. This equation implies that the photon
absorption occurs with a fixed electron’s coordinate, like in the Born —
Oppenheimer approximation where the coordinates of molecular nu-
clei do not alter by electron transitions. Note that Eqn. (4.12) is
the mathematical expression of this fact. Thus the hybrid Rost ap-
proximation can be considered as the generalization of the adiabatic
principle on the case of electronic transitions in atoms.

Figure 4 shows the ratio of the photoionization cross section
for the ground state of the hydrogen atom calculated using the Rost
formula (curve 1) and in the Kramers approximation (curve 2), to the
Sommerfeld cross section. This figure implies that the quasi-classical
Kramers approximation describes the photoeffect cross section near
the threshold somewhat better than the Rost model, and vice versa at
high frequencies. Indeed, in the high frequency limit, the Kramers ap-
proximation provides inaccurate asymptotic (w = instead of w=7/2)),
whereas the ratio of the Rost result to the exact value in this spectral
range is 7 /2v2 & 111

It is important to emphasize that in contrast to the Brandt—
Lundqvist approximation, the Rost model does not ensue the sum
rule for the photoabsorption cross section. For example, in the case
of the hydrogen atom, the corresponding integral over the frequency
yields two times as large value. Note that the maximum of the hy-
drogen atom photoabsorption in the Rost approximation lies at the
frequency / 242 ~ 1.11 a.u., which is substantially less than the
first excitation potential, and the maximum cross section amounts to

() =~1127 aun.

ph, max

Photoabsorption formula (4.13) was generalized on the case
of helium atom in paper [49]. A comparison of the obtained result
with experimental data showed that the relative error for moderate
photon energies is within the 5% limits.

ag

Polarization effects are significant in the photoionization of
negative ions due to a large polarizability of the ionic core, i.e. of the
neutral atom. This issue is considered in review [50]. Here we briefly
consider a quantum-mechanical calculation of this phenomenon for
a negative ion of the alkaline metal, when the polarizability of the
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atom-core is especially large. The contribution of polarization effects
into this process can be accounted for using the following effective
potential [51]:

Vig(r, 1) = AW Br l1 ~exp (- (1>3>] cos(wt),  (4.17)

73 o

where a(w) is atom’s dynamic polarizability, ¢ is the size of its
outer orbit. The factor in the square brackets in Eqn. (4.17) describes
the polarization interaction decrease at small distances. To calculate
photoionization cross section using Eqn. (4.17) and the conventional
“direct” interaction potential of the electromagnetic field with the
target’s electron, it is convenient to make use of an analytical ex-
pression for the wave function of the negative ion’s external electron
obtained by approximating variational results [52].

The spectral photoionization cross section of the negative lithi-
um ion ([ =6.18 eV, «a(0) = 162 a.u. [53]), calculated in the plane—
wave approximation for the ionized electron, is shown in Fig. 5 with
and without taking into account polarization effects. It is clear that
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Fig. 4. The ratio of the photoionization cross sec-
tion from the hydrogen atom ground state in var-
ious approaches: curve I for the Rost approxima-
tion [49], curve 2 for the Kramers approximation,
to the Sommerfeld cross section.
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the latter effects strongly decrease the cross section at frequencies of
the order of the maximum frequency, which is linked to the opposite
direction of the field induced by the ionic core with respect to the
external field direction.

Fig. 5. The photoionization cross section for the
negative ion of lithium calculated with account for
polarization of the core (curve 1) and ignoring po-
larization effects (curve 2).

5. Bremsstrahlung and photorecombination
of moderate energy electrons
on multielectron atoms and ions

Bremsstrahlung and photorecombination of electrons during
their scattering on atoms and ions are fundamental processes of plas-
ma physics and play an important role in other fields of physics and
numerous technical applications. As a rule, these phenomena have
been considered without taking into account the polarization channel.
However, in some cases its contribution can be quite essential. First
of all, this relates to processes involving multielectron targets when
a consistent quantum-mechanical calculation is very complicated due
to the many-particle character of the problem. However, it is in this
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case that the application of approximate methods based on plasma
models for atom (ion) polarizability and on the statistical method
for target’s electron core description becomes very effective. More-
over, bremsstrahlung of moderate energy electrons, which are natural
for plasma, can be successfully treated by well-developed methods of
the so-called Kramers electrodynamics. Such methods used for the
static channel calculations have demonstrated a good accuracy com-
bined with physical clarity. The generalization of these methods to
the polarization channel enables one to account for effects of the IP
penetration into the target’s core and to find a universal (for all nu-
clear charges) description for the static and polarization radiative
mechanisms based on one ground.

5.1. Radiative losses of electrons in scattering
on neutral atoms

Radiative losses of electrons in a continuum spectrum in scat-
tering on heavy atoms are due to their bremsstrahlung in atom’s
potential field (below in this Section we shall ignore the losses due to
excitations of atomic electrons and corresponding to the discrete ra-
diation spectrum). A characteristic feature of these processes is the
incident electron penetration into the atomic core which increases
the effective charge interacting with the electron. This effect leads
to the appearance of the characteristic increase of the bremsstrah-
lung spectrum frequency dependence, unlike the decreasing spectral
dependence in the pure Coulomb field, see review [47]. This phe-
nomenon is important in making diagnostic and estimating radiative
losses in plasma with heavy ions which have a considerable electronic
core. In fact, here we deal with the interaction between electrons
with energy from 0.5 to 10 keV and atoms with nuclear charge > 20.

Calculations of the bremsstrahlung (BR) in a static atom’s po-
tential have been performed by various methods: within the frames of
the Born approximation [54], using the semi-classical method [45], by
numerically solving the Schrodinger equation in the Thomas — Fermi
potential [55, 56], by the method of the self-consistent field [57], or by
the quasi-classical method [46]. In the last case it was demonstrated
that for moderate energy electrons (common for plasma) the clas-
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sical approximation for the atom potential is precise. Moreover, in
calculating spectra at high frequencies which are responsible for the
largest electron energy losses, it is possible to use the so-called “rota-
tion approximation” (RA) which corresponds to taking into account
radiation from the most distorted part of the electron’s trajectory
in the atomic potential. In this approximation, the bremsstrahlung
spectrum is entirely determined by the dynamics of electron scatter-
ing and is expressed as a functional of that potential, see [46, 47] for
more detail. A thorough comparison of classical and quantum calcu-
lations has confirmed the high accuracy of the classical method used,
which is about 5% for a pure Coulomb potential and varies within the
20% range for complex ions depending on the ionic core structure.

In spite of generally good correspondence between the spec-
ified theories based on the static potential of the electron— atomic
interaction, a comparison of the results of calculations [57] with ex-
perimental data [58] reveals a systematic discrepancy for atoms with
large nuclear charges (Z > 60), mostly notable at low frequencies.

This discrepancy with experiment can exist for a number of
reasons including the contribution due to the polarization channel
related with the dynamic polarization of the atomic core, which has
been ignored for the ordinary (static) bremsstrahlung. Numerous
calculations of the polarization bremsstrahlung (PBR) carried out
in recent years [9] indicate that the contribution due to this pro-
cess can be comparable to (and even in excess of) the static channel
contribution. In paper [30], a detailed quantum-mechanical calcu-
lation of PBR on a multielectron atom in the wide spectral range
has been performed for krypton using the method of random phases
with exchange. However, until the present time, there are no exten-
sive calculations of the PBR spectra similar to those carried out in
[46] for the static potential. Such calculations are possible using an
atom plasma model and the quasi-classical approximation like that
employed in [46] for static bremsstrahlung (SBR). Thus the direct
comparison between PBR and SBR becomes possible for all kinds of
atoms in a wide range of emitted quanta frequencies and the incident
particle (IP) energies.

The expression for the spectral effective bremsstrahlung in the
static channel was first derived in [46] with the form (in all cases we
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use the atomic units):

e\ _ 8wA_ T , [ e, )
<dw>st B 303\/ﬁ0 (fee(r))7 /1 + B d(w = wrot(r)) rodr.

(5.1)
Here A is the normalization factor, U(r) is the atomic potential,

fa(r) = =dU fdr = Zes(r) /1 (5.2)

is the ordinary “static” force acting on the incident electron, Ze¢(r)
is the effective charge of the atom at a distance r from the nucleus,
E is the initial kinetic energy of the incident particle, and wyo(r) is
the “rotation” frequency defined by the equality

2 (E+ 00N

Wrot (7”, E) = ”

(5.3)

The rotation frequency wyot(r, E') arises in the quasi-classical limit
for matrix elements that determine the PBR spectrum in the atomic
potential. The inclusion of the delta-function in Eqn. (5.1) means the
prevalence of matrix elements with the frequency difference w — wyot
over the corresponding matrix elements containing their sum, see [46].
Since the same quasi-classical wave functions of the incident electron
appear in the PBR calculations, it is natural to use the rotation
approximation for the polarization channel too.

The simplest variant of the rotation approximation in the PBR,
theory consists in substituting the “static” force in Eqn. (5.1) by the
“polarization” force [11]. The polarization force that depends on fre-

quency reads
Npol("’v w)

vl (5.4)

fpol(ra w) = ’

where Npoi(r, w) is the effective charge of the atomic core, this
charge responsible for radiation at frequency w via the polariza-
tion channel. In the local electron density model [25] can be ex-
pressed as

T
Npol(r, w) = w? /5(7", w)47rr'2 dr'|. (5.5)
0
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Here [(r, w) is the spatial density of target’s dynamic polarizabil-
ity for which we use below the Brandt—Lundqvist approximation [3]
corresponding to a static plasma model of atom:

_ n(r)
~dwa(r) —w? -0

B(r, w) (5.6)

Here n(r) is the local electron density of the atomic core. The ex-
istence of the current radius (the distance from the nucleus) in the
upper limit of integration in Eqn. (5.5) describes the incident electron
penetration into the target’s core and related effects.

It should be noted that the inclusion of polarization force
(5.4) = (5.6) is rather conventional because it is defined both by the
real and imaginary parts of polarizability (5.6). In this connection
we should point that the possible interference of the static and polar-
ization radiative channels can be connected with the real part only.
Simple considerations indicate a comparative smallness of the inter-
ference effects, which is confirmed by calculations [30]. As follows
from Eqn. (5.5), this is due to polarization effects being propor-
tional to the square of the emitted frequency w?. So the contri-
bution of the real part of the polarizability can be appreciable for
sufficiently high w. However, owing to the incident electron pene-
trating into the core, core effective charge (5.5) decreases whereas
the effective charge Zg increases, so the interference terms are nu-
merically small. Thus, the smallness of the interference contribu-
tion is due to effects of the incident electron penetration into tar-
get’s core. These effects are quite essential inside the considered
interval of frequencies and energies. We should note that the in-
terference of the static and polarization channels could be impor-
tant when the penetration can be neglected [59] or is not too essen-
tial [60].

Method (5.5) - (5.6) can be termed the local plasma frequency
approximation. It is physically applicable for treatment of polariza-
tion effects within the frames of statistic models of atom.

Substituting Eqn. (5.4) into (5.1), we obtain the follow-
ing expression for the radiative spectral energy losses through the
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polarization channel in RA

(5) = = (r,w))?
dw ] ol - 303\/2E Npot

IU(T)I

xA[1+ 8w — wro(r)) r2 dr. (5.7)

Here it is suitable to note that the electrostatic interaction of electrons
with each other is small in comparison with their interaction with the
nucleus, which exceeds the former by seven times for the Thomas—
Fermi model (see the problem to Sect. 70 in [2]). This fact allows us
to use in the PBR consideration the same trajectory of the incident
electron as in the SBR.

The presence of the delta-function in Eqns (5.1) and (5.7) al-
lows direct integration. Then with the help of Eqn. (5.3) we obtain
for the statistic channel (cf. [46]):

(dﬁ)mt_ 831w (Zet(ret(w, B)))2/1 + WCeslnPl 12 (, Ry

dw)s — 3¢3V2E wr, ef(waE) + Zet (ret(w, E))
(5.8)
Analogically, for the polarization channel we have:

<d_/<;>r°t_ 8v3rw (Npo(rer(w, B),w))?y/1 + Ll 12 (o, B)
dw pol 303\/ 2F w2r (w E) + Zef(ref(w E)) ‘
(5.9)

In equations (5.8) and (5.9) we have introduced the character-

istic emission radius in the rotation approximation ref(w, E) [46, 47]

as defined from the equation:
2 (E+|U(r)|) = w?r?. (5.10)

The physical sense of Eqn. (5.10) is that the emission in the
approach under study is largely determined by the distance from
the target’s core at which the emission frequency coincides with the
angular rotation velocity of a classical electron in the atomic field at
the point of maximum approach.
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The expression for the spectral R-factor in the rotation ap-
proximation follows from Eqns (5.8) and (5.9):

d’fpol(wa E) }(rot) o |:Npol(ra w):|2
dFist (w7 E) Zef(’l’) r=ret(w, E) .
(5.11)
The total energy losses due to bremsstrahlung in the static
and polarization channels can be obtained by integrating Eqns (5.8)
and (5.9) over frequency up to the initial kinetic energy E. On the
other hand, this integration can be performed in Eqns (5.1) and (5.7)
containing the delta-function. Then we have for the total effective
emission in each channel:

R(rot)(w’ E) :{

_ 8V3m o [, W)
Ny (Zes(r))?([1+ == r2dr,  (5.12)
ref(E, E)
8v3m ulr)| _
= SO0 e, B2 1+ 20O g
Tef(E,E)

(5.13)

Thus, if the target potential and electron density of its core
are known, Eqns (5.8), (5.9), (5.12), and (5.13) (with account for
Egns (5.3), (5.5), and (5.6)) give the solution to the problem for
quasi-classical electrons in the general form. This method will be
used below for calculation of the spectral and total energy losses
within the frames of the static model of atom.

As is evident from Eqns (5.9) and (5.13), the key quantity
(which defines the emission in polarization channel in the given ap-
proximation) is the frequency-depending effective polarization charge
Npoi(r,w); we shall examine its properties below.

First we note the general relationships for the polarization
charge in the local electron density approximation that entails from
Eqns (5.5) and (5.6). It is quite clear that N has the correct high
frequency asymptotic (that also follows from the quantum-mechanical
expression for polarizability):

ol (1) = Npoi(r, w — 00) = Ne(r) = /47rn(r) r2dr. (5.14)
0
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Ne(r) is the number of atomic electrons in a sphere of radius r. It
is natural that for 7 > Ry ( Ry is the atomic size) the value of N(r)
is equal to the total number of electrons in the target core Ny, .

In the opposite low frequency limit we have from Eqns (5.5)
and (5.6):

3 3

R r
NG r,w) = w? |0(r = Ro) 50+ 0(Ro —7) | - (5.15)

We note that expression for the target’s static dipole polarizability,
which follows from Eqn. (5.15), of target ap = w_QNIS?){ (r> Ro,w) =
R}/3 gives areasonable accuracy for atoms and ions with closed shells
and sufficiently large number of bound electrons Nge > 30 if the size
of atom (ion) is calculated in the Thomas - Fermi— Dirac model [25].

In the statistic models, the electron density of a neutral atom’s
core that defines the polarization charge (see Equs (5.5), and (5.6)),

can be presented in the form [2]:
n(r) = Z2f(r/rrr). (5.16)

Here rop = b/Z 1/3 is the Thomas— Fermi radius, Z is the atomic

1/3
“charge”, b = (%) / . The form of the function f(z) is dictated
by the statistic model choice. For example, in the Thomas— Fermi

model we have [2]:

frp() = — (M)g/2 (5.17)

T4\

where x(z) is the Thomas—Fermi function. The expression for f(x)
in the Lenz— Jensen statistic model which better describes the be-
havior of the electron density at large distances from the nucleus
reads [1]:

(14 0.26v9.7z)3
9.723/2 '

We note that for z < 1, Eqns (5.17) and (5.18) give almost coincident
results.

fri(z) =2 3.7exp (—M) (5.18)
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Substituting Eqns (5.16) and (5.17) into Eqns (5.5) and (5.6)
yields the following expression for the polarization charge in the
Thomas — Fermi model:

T w
Npatlri.2) = Zg (5, 7). (5.19)

Here we have introduced the universal function g(z,v):

3/2 /\/_Id:L"
/ b3 (x /x DE e

(5.20)

$I/_I/

which is the polarization charge normalized to the total number of
atomic electrons as a function of the dimensionless distance = =
r/rrr and the reduced frequency v = w/Z. Equations (5.19) and
(5.20) provide a universal representation for the polarization charge
in the Thomas — Fermi model.

Note that Eqns (5.19) and (5.20) generalize a one-parametric
similarity law for the dipole polarizability of the Thomas —Fermi atom
first obtained in [46] for the case of two variables. The dipole limit
for Ny, is obtained from Eqns (5.19) and (5.20) if in Eqn. (5.20) the
upper limit of integration is set to infinity: ¢%P(v) = g(z — oo, v).

Comparison of calculations made in the frames of the consid-
ered method for the real and imaginary parts of the dipole polariz-
ability of the krypton atom (multiplied by the frequency square) with
quantum-mechanical calculations carried out in the approximation of
random phases with exchange taken from [30], indicates that in the
case of the Thomas—Fermi atom, the local plasma frequency method
describes on average the exact spectral dependence that accounts
for the shell structure of atom. For Slather’s electron density, the
method in use leads to the appearance of maxima and minima due
to ionization of electronic subshells. Here, however, the universality
of description, which is typical for the Thomas— Fermi atom, is lost.
So, we can conclude that the approximation in use gives a reasonable
accuracy for the atomic dipole polarizability value but does not de-
scribe, naturally, the quantum-mechanical properties of the atomic
electron distribution.

In what follow we shall examine the case for the polarization

charge calculated in RA, Négft) (w, F), because it accounts for the
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effects of the IP penetration into the target’s core which are essential
for the quasi-classical electrons. The corresponding expression can
be obtained using Eqn. (5.5) and the equation:

N (w, E) = Nyol(ret (w0, B), w) (5.21)
Here ref(w, F) is the solution to equation (5.10). Hence in the rota-
tion approximation we obtain for the normalized polarization charge:

9" (v,€) = g(zer(v,€), ) (5.22)

Here € = bE/Z*/? is the reduced energy; z(v,e) is the solution to
Eqn. (5.10) rewritten in terms of parameters v and .

Spectral energy losses of quasi-classical electrons due to the or-
dinary (static) channel in scattering on a Thomas— Fermi atom were
calculated in [46] both with the use of RA (inside its applicability
region v > 3¢), and in the low-frequency interval (v < 3¢)) using
linear interpolation to the “transport” limit. In paper [46], the ob-
tained results were compared with the results of quantum-mechanical
calculation [57] which demonstrated a high accuracy of the approx-
imations used. Within the framework of RA, we shall obtain here
a universal expression for the spectral bremsstrahlung losses due to
the polarization channel in quasi-classical electron scattering on a
Thomas— Fermi atom. This can be conveniently done in terms of
R-factor (5.11), which is the ratio of contributions due to polar-
ization and static radiative mechanisms. By passing in Eqns (5.4)
and (5.11) to the reduced variables, it is easy to obtain the following
expression:

E(rot)

Tr (V,€) = . 3t<v<uy<10.

2
9(z,v) ]
X(SE) + 5U|X'(33)| =Tt (V,€)

(5.23)
Here the prime stands for the differentiation with respect to the ar-
gument and g(z,v) is the normalized polarization charge defined by
Egn. (5.20). The maximum reduced frequency vy follows from the
energy conservation law and is a function of the reduced initial en-

ergy and the nuclear charge: vy = (\3/7 / b) €. The transition to the
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ordinary frequency and energy is performed with the help of equation:

RS (w, B) = RV <% ZET??)) : %E <w<E. (524)
Thus, Eqns (5.23), (5.24), and (5.20) and the definition zef(v, ) give
a universal (correct for all nuclear charges) representation for spec-
tral R-factor in the approach considered. These relations should
be completed with the expression for spectral losses via the static
channel (5.8); for the Thomas— Fermi atom they expressed through
reduced variables:

(d_“>r0t _ 8VBnZ2 360y 1 (x /) 1P/ + X/ (we)
dw/g 3c34/2¢ b3zv? +|(x/z)'|

r=Tet (V)

(5.25)
An equivalent to Eqn. (5.25) expression was obtained for the first
time in [46] in terms of the Gaunt factor for RA. In the Coulomb
(x(z) = 1) and Kramers (7 > €) limits, one can obtain from
Eqn. (5.24):

(d_/q‘)rot,COul B <d_ﬁ>Kramers B 87 Z_2 (5 26)
dw) & ~ \dw 333 E ’

Spectral emission in polarization channel is obtained from
Eqn. (5.25) by the substitution z?(x/z)’" — g(x,v) which follows
from Eqn. (5.23):

()™ _ 32 g T
dw )/ ol N 3¢3v/2¢ v +|(x/z)|

(5.27)

T=xes(V,€)

Here we also present the corresponding expression, obtained in [61]
in the Born—Bethe approximation, in terms of the reduced variables:

dr\B~B g 72/3 , 1\/% .
(@)pm =33 o () n{ 2y ) 6> ooan . (5:28)

Here gqip(v) = g(# — oo, v) is normalized polarization charge (5.20)
in dipole approximation. Equation (5.28) implies that, contrary to
RA, in the Born—Bethe approximation there is an upper frequency
limit: v < 1.7\/€.
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Figure 6 presents the dependences of the electron effective
emission on the Thomas— Fermi atom on the reduced frequency in
polarization and static channels for two values of the IP initial en-
ergy calculated within the frames of various approximations. Curves
1 and & illustrate the polarization channel calculated in the rota-
tion approximation and the Born— Bethe approximation (5.28) re-
spectively. In calculating dependence 2 (corresponding to the static
channel), in the low frequency interval the Gaunt factor go(e) for
the Thomas— Fermi atom was used in the “transport” limit. The
corresponding interpolation for the function gg(e) was obtained us-
ing data from paper [62]. Figure 6 indicates that the polarization
emission calculated in the rotation approximation at v < e virtually
coincides with the results obtained in the Born— Bethe approxima-
tion. Note that the inequality v < € can be rewritten in the form:
w<bE/Z 1/3 . Hence for large Z it corresponds to the applicability
condition for the low frequency approximation in the BR theory. In
this case, the electron scattering on neutral atom is weakly perturbed
by the radiative process and for the PBR calculation its motion can
be considered as uniform and rectilinear even for slow electrons [59].
This justifies the applicability of the Born —Bethe approximation for
polarization channel at low frequencies. Thus, owing to a good conju-
gation of curves I and 3, the rotation approximation will be applied
for calculation of polarization emission in the entire spectral interval
under consideration. The decrease of (dx/ dw);%tl with frequency (il-
lustrated in Fig. 6) is due to effects of the IP penetration into the
target’s core. However, this fall off is not so sharp as in the Born—
Bethe approximation. The initial increase of (dr/dw) with frequency
is well known from the PBR theory [9] and is caused by the factor
v? included in polarization charge definition (5.20). So the spectral
dependence of the PBR intensity has a maximum with the central
frequency shifting toward high frequencies as the IP initial energy
increases. This fact is in agreement with the conclusion of paper [63],
in which the correlation wpy,x ~ 0.8F was obtained in the Born ap-
proximation. Figure 6 also implies that everywhere in the considered
interval of parameters the contribution due to polarization channel
is less than the static contribution, with the difference growing with
the IP energy.
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Fig. 6. The effective spectral radiation of an elec-
tron on a Thomas— Fermi atom (Z = 60) as a
function of the reduced frequency v = w/Z for
different values of the incident electron reduced en-
ergy (a) t =0.1; (b) ¢t = 1. Curve I stands for
the polarization channel (in the rotational approx-
imation), curve 2 for the static channel, and curve
3 for the polarization channel (in the Born— Bethe
approximation).
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Figure 7 exhibits the spectral effective emission in static and
polarization channels for electrons with energies 1 keV and 5 keV
scattering on the krypton atom, as calculated by the present paper
method (curves 1 and 8), and using consistent quantum-mechanic
methods in [30] (curves 2 and 4 ). The dependencies for static channel
has been obtained using Eqn. (23) and the above-mentioned proce-
dure of linear interpolation to low frequencies v < 3¢ [46]. Note that
the static BR was calculated in [30] within the frames of the distorted
plane wave approximation by summing up partial contributions from
different angular momenta with the use of the exact potential of the
krypton atom. It is evident that both methods yield very close results
for the static channel. A small difference between curves 8 and 4 at
high frequencies is due to a certain freedom in the choice of the up-
per bound frequency for the linear interpolation. For the polarization
channel our result more strongly deviates from that of paper [30] ob-
tained using the random-phase-with-exchange approximation which
includes not only individual quantum-mechanical properties of the
atomic electron motion but also inter-particle correlation effects. This
difference is mostly strong near the ionization potentials of electronic
subshells where the real and imaginary parts of the atomic polariz-
ability have resonance structures. For the 1-keV electrons, the broad
dip in the spectral PBR intensity is due to ionization of the 3d sub-
shell of the krypton atom. In the case of the 5-keV electrons, the dip
on curve 2 shown in Fig. 1(b) is caused by the 2p subshell ioniza-
tion. Its relative width is perceptibly less, so accordance between the
results of the method employed and consistent quantum-mechanical
calculations is better. Here we should note that in [30] (unlike the
present paper), the cross-channel interference was also taken into ac-
count, which was found to have generally a minor effect on the total
BR intensity. The interference effects are mostly prominent near ion-
ization potentials of the electronic subshells and at high frequencies.
Apparently, these effects are responsible for the difference between
curves I and 2 of Fig. 2(b) for photon energies above 2200 eV. As
a whole, Fig. 7 demonstrates reasonable accuracy of the method em-
ployed for the PBR calculation on a multielectron atom.

Note that the relative contribution of the polarization chan-
nel at a given reduced frequency increases with the initial electron
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Fig. 7. The spectral intensity of bremsstrahlung
radiation of an electron with energy 1 keV (a) and
5 keV (b) on the krypton atom for different radia-
tive channels: 1 — the polarization channel (cal-
culation of the present paper), 2 — the polariza-
tion channel with inclusion of the interference con-
tribution (calculation in the random phase with
exchange approximation [30]), 8 — the contribu-
tion from the static channel (calculation of the
present paper), 4 — contribution from the static
channel [30].
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energy, though the maximum value of the R-factor decreases with
the TP energy. This is because within the frames of RA, the effec-
tive emission radius increases with the IP energy for a fixed emis-
sion frequency. The spectral R-factor reaches maximum at vpax =
0.15-0.45, with v,y increasing with the IP energy, while for fast
electrons vmax = 1 [64]. It is interesting to note that for slow elec-
trons (E < I, I is atom’s ionization potential) the maximum PBR
contribution is shifted toward high frequencies [59, 63], which is be-
cause the incident particle does not penetrate into the target’s core.

Equation (5.24) for the R-factor enables us to study its de-
pendence on the nuclear charge of the Thomas—Fermi atom at fixed
values of the emission frequency and the IP energy. The correspond-
ing calculations for various values of frequency and fixed initial energy
in the keV range indicate that the relative contribution of polariza-
tion channel increases with the nuclear charge. The R-factor proves
larger for shorter emission frequency at the same initial energy.

The growth of the relative contribution of the polarization
mechanism as the nuclear charge increases, predicted by the devel-
oped PBR theory, is in qualitative accordance with experimental re-
sults of paper [58]. The BR intensity at low frequencies was mea-
sured in [58] to exceed double the quantum-mechanical SBR calcu-
lations (ignoring polarization channel) [57] for large nuclear charges
(Z =~ 90). At the same time, for small and moderate Z a good
accordance between experiment and the exact theory of the ordinary
(static) BR was observed. It should be noted that quantitatively this
excess is not completely explained by the PBR theory developed here
and perhaps is a consequence of contributions due to other radiative
processes (such as, for example, the two-photon BR, see paper [58]).

Figure 8 illustrates the total (static and polarization channels)
effective emission for three values of the nuclear charge of a Thomas—
Fermi atom as a function of the photon energy. It is evident that the
PBR contribution modifies the general form of the spectrum com-
pared to purely static case (see curves 3, / in Fig. 7).

Now we turn to calculation of the total radiative losses. Gen-
eral expression (5.12) for the total energy losses in the static channel,
first obtained in [45] within the frames of semi-classical method, can
be rewritten for the Thomas— Fermi atom in terms of the reduced
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Fig. 8. Bremsstrahlung spectra with account for
the polarization channel normalized to their values
at w = 90 a.u., for an electron with energy 100 a.u.
scattering on a Thomas —Fermi atom with different
nuclear charges: 1 —Z =30, 2— Z =60, 3 —
Z =90.

variables:
Z4/3 8v/3nv/b Z5/3
kgt | F=—¢) = ———
b 3c3 vV 2e

X /x:}(yhbs) l(%)lr 1+ %aﬁ dr. (5.29)

Here, as in Eqn. (5.23), vy = ({?’/7 / b) ¢ is the reduced frequency
corresponding to the bremsstrahlung high frequency cut-off. It is
important that for expression (5.29) to be valid the RA condition
(v > ngg)(t) = 3¢) can be relaxed. Only the condition of quasi-
classical motion of the scattering electron € < 1 should be met. On
the other hand the correct normalized multiplier can be obtained only
by comparing the semi-classical result [45] and the quasi-classical
limit of the exact quantum-mechanical expression for the spectral
cross-section (see [46]).
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By rewriting analogically Eqn. (5.13) for the total energy losses
in the polarization channel, we obtain:

74/3 75/3
b b 35 Vo

x/ g(x,l/rot(x,e))2ﬂl + Mx_Q dz. (5.30)
Tef (Vht,€) exr

Here the function g¢(z,v) represents normalized polarization char-
ge (5.20); vyot(x,e) is the reduced rotation frequency depending on
the reduced distance and energy which follows from Eqn. (5.3)

2 et x(@)/z

i (5.31)

Vrot(5v7 6) =

Expression (5.30) for the total energy losses in polarization channel
was obtained in the rotation approximation which, as was shown in
the previous section, provides adequate description of PBR (contrary
to SBR) at low frequencies as well.

Note that in Eqns (5.29) and (5.30) (unlike in the correspond-
ing expressions for spectral losses (5.25) and (5.27)), in addition to
the multiplier Z%3 in the element of integration there is an explicit
dependence on the nuclear charge appears due to the lower limit of
the integral over the dimensionless distance =z depending on Z. In-
deed, the above-mentioned lower limit is a solution to the equation:

X(«T) _ bZ2/3 722

t
+ x 2

(5.32)
which includes Z as a parameter. Thus, the total energy losses of
the quasi-classical electron scattering on the Thomas— Fermi atom
exhibit no exact scaling over the reduced frequency and energy which
is characteristic for the spectral energy losses. However, calculation
demonstrates that the lower limit of integration in Eqn. (5.30) rather
weakly depends on Z: changing the nuclear charge by two times
alters the value zef(vp, €) by about 10 -15%. Hence, we can conclude
that there is an approximate scaling in the total energy losses on the
Thomas — Fermi atom.
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From the viewpoint of unification of radiative processes, it is
worth noting that Eqn. (5.29) can be presented in the form simi-
lar to Eqn. (5.30) if the effective (normalized) charge emitting via
the static channel is introduced according to the equation gs(z) =
@?(x(z)/z)'-

In the rotation approximation, the effective polarization charge
increases at small distances from the nucleus by staying virtually in-
dependent of the IP energy and coincides with the radial distribution
of the core electron charge. At large distances, the polarization charge
becomes a decreasing function of the distance having a larger value
at large TP energies. All these facts can be interpreted by taking into
account the rotation frequency v01(,€) dependence on the distance
from nucleus and on the IP energy. At small distances, according
to Eqn. (5.3), the value vyo(z,e) is large (independent of the pa-
rameter ¢), and high frequency approximation (5.3) holds for the
polarization charge, in which it coincides with the radial distribu-
tion of the core electron charge. At large distances from the nucleus,
the smaller the initial energy the stronger the rotation frequency de-
crease and the polarization charge starts diminishing, as follows from
its definition (Eqn. (5.20)).

In Figure 9 we present the dependence of the Gaunt factor (the
ratio between the electron effective emission on the Thomas — Fermi
atom (Z = 60) to its Kramers analog) on the IP reduced energy
for static and polarization channels of the process. Evidently, the
polarization emission prevails over the static emission at low energies
¢ < 0.05, which, if expressed in ordinary units, for a given nuclear
charge corresponds to F < 360 eV). Note that for such IP energies
the Brandt— Lundqvist approximation for the target polarizability
calculation become marginally applicable for the characteristic emis-
sion frequencies. Figure 9 also suggests that the total losses in po-
larization channel rapidly saturate with the electron energy increase
in contrast to the losses in static channel that intensively increase up
to the Coulomb limit. The rapid saturation of radiative polarization
energy losses is explained by the electron penetration into the target
core becoming more important with the IP energy and the related
polarization charge decreasing. As a result, the scattering electron
mostly radiates in polarization channel at relatively low frequencies
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Fig. 9. The Gaunt factor for total energy losses in
scattering of a quasi-classic electron on a Thomas—
Fermi atom (Z = 60) for the static (the dotted
line) and polarization (the solid line) channels as a
function of the reduced energy t = bT/Z*/3 (T is
the initial electron energy in atomic units).

so that its energy growth does not increase the total energy losses
due to the polarization radiation.

In analogy with spectral R-factor (5.23) and (5.24), we can
introduce the R-factor for total losses. In the reduced units it reads:

D K 1(67 Z)
R 7Z) =77 5.33
tot(57 ) K;st(ga Z) ( )
In the dimensionful energy units we have:
~ Eb
Riot(E, Z) = Ryt (W’ Z) . (5.34)

Figure 10 illustrates the dependence of Ry on the initial electron
energy (in the ordinary units) for various atomic nuclear charges.
Evidently for energies E > 1 keV the fraction of polarization effects
in the total energy losses decreases monotonically with the IP energy.
For a fixed initial energy, the relative contribution of the polarization
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channel increases with the atom —target nuclear charge, as is also the
case for the spectral radiative losses.

Based of the above consideration, we can make the following
conclusions. The statistic model of atom provides a high accuracy
for the static BR channel. For the polarization channel, the accu-
racy of this model conserves on average, while near the ionization
potentials of the electronic shells the divergence between the statis-
tical model and quantum calculations [30] becomes essential. The
contribution due to polarization mechanism is maximal at low fre-
quencies v =~ 0.15—0.45, where the R-factor is about unity, with
the central frequency of the maximum increasing with the IP energy
growth. At a fixed frequency, the value of the R-factor increases
with the scattering electron energy decrease at high frequencies and
decreases at low frequencies. The relative value of the polarization
radiation at the fixed frequency and IP energy increases with in-
creasing atomic nuclear charge, which is in qualitative accordance
with experimental data [58]. The total energy losses due to the
polarization emission proves to be comparable with the losses due

0.8

Rtot (T)

0.2 | | |

T, keV

Fig. 10. The dependence of the R-factor (that
characterizes the relative contribution of the po-
larization channel into the total energy losses) on
the initial energy in quasi-classic electron scatter-

ing on a Thomas— Fermi atom of various nuclear
charge: 1—Z2=30,2—272=60, 83— Z=90.
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to the ordinary (static) BR. The region of the polarization chan-
nel prevalence is defined by the inequality E < 0.05(Z*3/b), where
however the characteristic emission frequencies lie at the bound-
ary of this model applicability. In scattering of a quasi-classical
electron on a Thomas— Fermi atom, the polarization losses rapidly
saturate with the IP energy growth, owing to the scattering elec-
tron penetrating into target’s core, whereas the ordinary bremsstrah-
lung losses go on increasing (for ¢ < 1). The typical value of
the polarization channel relative contribution in the total energy
losses in the 1-5 keV energy range changes from 80 to 25 per cent,
by decreasing with energy and increasing with the atomic nuclear
charge.

Thus, we can conclude that polarization effects in the brems-
strahlung of moderate-energy electrons on atom become more signif-
icant as the nuclear charge increases, as well as the frequency and IP
energy decrease.

5.2. Core polarization effects in emission
and recombination of electrons
on multielectron atoms

For applied problems of high temperature plasma physics it
is necessary to calculate emission of thermal energy electrons on
ions with a core with account for the ionization state of plasma
and the polarization channel contribution. In this Section we exam-
ine the employment of plasma models for a target’s electronic core,
analogous to the models applied for neutral targets, for description
of emission and recombination of plasma electrons on multielectron
ions.

The calculation of the effective emission and photorecombina-
tion of an electron on an ion with a core is based on the Thomas—
Fermi model for the density n(r,q,Z) of the electron distribution in
the ion’s core (¢ = Z;/Z is the ionization degree, Z; is the ion
charge). The general form of the function n(r,q,Z) is given by
Egn. (5.16). The function x(z,q) depends on the ionization degree
and can be conveniently calculated using the approximate expression
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obtained by Sommerfeld and specified on in [1]:

1+ 2(x) >A1/A2]
1+ 20(q) ’

Here z((q) is the reduced ion radius, xo(z) is the Thomas— Fermi
function of the neutral atom, A\; = (7T++/73)/2, Ao = (=7+/73)/2.
A good approximation for the reduced ion radius can be obtained in
the Thomas — Fermi— Dirac model [8]:

x(,q) = xo(z) [1 - <
(5.35)

1—q\2/3
:13()—296( : ) . 02<g<l. (536
Approximation (5.36) is sufficient for a high-temperature plasma with
electron temperature of 7" > 500 eV. For lower temperatures and
correspondingly smaller ionization degrees, the parameter zy(q) can
be determined from the solution of the transcendental equation ¢ =
—z dx/dz [1], where x(z,q) is given by Eqn. (5.35).
In the considered approximation the ion potential reads:

4/ .
Ur = aree) = 2 0(ay - )[MT"J)JF%

; ] +0(x — ) % (5.37)

and here 6(z) is the Heaviside step function.

To calculate spectral effective emission in static and polariza-
tion channel within the RA frames we shall use equations from the
previous section (5.8) and (5.9) with electron density of the Thomas —
Fermi ion (5.16) — (5.35) and potential (5.37). It is essential that, since
BR weakly depends on the IP trajectory, result (5.9) can be general-
ized (as was shown in [65]) over the whole spectral interval of photons
emitted. On the contrary, the interpolation of SBR (5.8) into the low
frequency interval poses a problem which can be solved differently for
neutral atoms and ion—targets. In the case of neutral atom linear
interpolation (5.8) to the transport limit [46] proves sufficient. This
procedure can not be applied for ions because the transport cross-
section of an electron scattering in the Coulomb field diverges in the
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limit of the IP zero energies. In that case for SBR we shall use the
sewing of the high and low frequency limits in the form suggested
in paper [62]. The corresponding Gaunt factor for the static channel
has the form:

o~ VB0 ln{exp lwmax@?,gst(u, s))]
T

\/gql‘(*f)

21

5
4’2 ] } . (5.38)

1.78@1/(]

Here v =w/Z, ¢ = Eb/Z4/ 3 are the reduced frequency and energy,
respectively, p(e) = (1 — In\/€)/2, and ¢%(v,¢) is the Gaunt factor
for SBR on the neutral Thomas— Fermi atom. The comparison of
the bremsstrahlung cross-section calculated using Eqn. (5.38) with
the results of consistent quantum-mechanical calculations [57] gives
evidence for a good accuracy of interpolation (5.38), to within 10%
as a rule.

Note that in the considered approximation the bremsstrahlung
and recombination emissions smoothly transform from each other so
that the high frequency spectral boundary is w" = E + I(Z;, Z),
where I(Z;,7) is the ion—target ionization ionization.

First we consider the effective emission in both channels with-
out temperature averaging. It is interesting to evaluate the BR con-
tribution in the case of low energy incident electrons E < I(Z;, Z) in
their scattering on multicharged ions when the recombination emis-
sion prevails. This situation takes place, in particular, in the ex-
periments on the storage rings [66]. For the ion ionization potential
I(Z;,Z) that determines the high-frequency emission boundary in
this case, we employ the fitting obtained in [54]:

+

3(1 4 7;)4/3
A (5.39)
1-0.96 (L)

1(Z,2) =

Figure 11 demonstrates the effective SR and PR emission as
computed by Eqns (5.8) and (5.9), respectively, in the frames of static
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Fig. 11. The effective radiation of a quasi-classic
electron with energy 1 a.u. in scattering on the

Fe*t ion: the solid curve indicates the static chan-
nel, the dashed curve indicates the polarization
channel.

model (5.35) for four-times ionized iron and the IP energy equal to
one atomic unit. With the growth of the emission frequency the con-
tribution of polarization channel apparently increases up to the static
channel values at w > 50 eV. In this case the short-wave boundary
of emission is 120 eV, in accordance with Eqn. (5.39). Since the
IP initial energy is relatively small, the effect of the IP penetration
into the electron core of the target does not appreciably decrease
the PR intensity in the high-frequency limit, although it slightly in-
creases the SR intensity. For w < E =1 a.u. only bremsstrahlung
is effective, while at higher frequencies the recombination emission
dominates. As the IP energy decreases the short-wave boundary of
emission naturally shifts toward lower frequencies. The form of the
spectral dependences and the relation between them do not change
principally.

The spectral dependence of the R-factor for recombination
emission of the monoenergetic electrons (E = 0.1 a.u.) on ions with
different ionization degrees is presented in Fig. 12 (for uranium as
the element having the largest ion core). Naturally, the maximum
value of the R-factor is obtained for the minimal ionization degree
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Fig. 12. The spectral R-factor for recombination
radiation of electrons with energy 0.1. a.u. scat-
tering on uranium ions (Z = 92) with different
ionization degree: 1 — Z; = 12, 2— Z; = 15,
3—7Z; =28.

(in our case Z; = 12), when polarization charge (5.5) is relatively
large. In that case the contribution of the polarization channel in
the recombination emission exceeds the static channel contribution
at sufficiently high frequencies. As is seen from Fig. 12, for the given
parameter values, there is an optimal frequency of emission at which
the R-factor is maximal. For higher frequencies the relative con-
tribution of the polarization channel in the process gets smaller due
to the effects of the IP penetration into the target’s electronic core
(which is accompanied by the polarization charge N, decrease).
The value of the optimal frequency increases with the ion charge,
with the R-factor decreasing and high-frequency boundary shifting
toward higher frequencies.

Now we turn to calculations of the SR and PR intensities of a
high temperature plasma in the coronal equilibrium state. The tem-
perature dependence of an ion with moderate ionization degree and
given nuclear charge will be employed in the following approximate
form:

. 26 0.0272T [a.u.]
9T, 2) =~ \/1 +0.015T[a.u.](26/2)%

(5.40)
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Equation (5.40) is a slightly altered variant of the expression given
in [67]; with the 5—10% accuracy it reproduces data obtained in [68]
by solving the system of equations for the coronal equilibrium. Ap-
proximation (5.40) allows the emission intensity in every channel (per
one electron —ion collision) to be easily calculated, including brems-
strahlung and recombination processes with account for the temper-
ature factor:

k‘(w,T, Z) — ?T—Z’»/Q
00 d ©
ﬁ p—
X / @ (W,E,q(T, Z)7Z) exp <_T> EdE. (541)
Enin UJ,T)

In equation (5.41), the lower limit of integration is defined by the
evident equation:

Enin(w,T,Z) =max{0,w — I(Z¢(T, Z), Z)} . (5.42)

In analogy with Eqn. (5.11), we can write for the R-factor, that
describes the ratio between the temperature-averaged intensities of
emission in polarization and static channels:

Re(w,T, 2) = % (5.43)

Figure 13 shows the spectra of the total and bremsstrahlung
emission in polarization and static channels calculated in accordance
with Eqn. (5.41) for scattering of plasma electrons with a temper-
ature of 500 eV on the tungsten ion (Z = 74) with the ioniza-
tion degree defined from Eqn. (5.40). The bremsstrahlung intensity
is calculated from Eqn. (5.41) with the lower limit of integration
equal to the frequency. For the indicated temperature and nuclear
charge we have: ¢ = 0.241, I = 775 eV. Figure 13 ensues that
the spectrum of the total emission in both channels exhibits a max-
imum and a break just at the frequency w = I, which reflects the
well-known threshold peculiarities of the recombination emission fre-
quency dependence [9, Chap. 11] (the dominant process in the con-
sidered case). At frequencies w < I, the recombination emission
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Fig. 13. Emission spectra of electrons scattering
on the tungsten atom (Z = 74) averaged over the
coronal plasma equilibrium state at temperature
T =500 eV. 1 —the polarization bremsstrahlung
radiation, 2 —the static bremsstrahlung radiation,
&8 — the total polarization bremsstrahlung, 4/ —the
total static radiation.

corresponds to electron transitions into the states with lower poten-
tial energy (the larger main quantum number). In approximation
in use these transitions are substituted by a continuous distribu-
tion of the target electrons over energy. The relative contribution of
polarization channel in the bremsstrahlung and total emission (the
R-factor) is virtually the same. The corresponding frequency de-
pendence of the R-factor is a curve that increases as a power law
at low frequencies, attains a maximum (RIP¥(T = 500 eV, W) =~
0.6) at a frequency nearly equal to the temperature, and mono-
tonically decreases at high frequencies due to the effects of the IP
penetration into the target core. All the above implies, that in
this case the PR fraction is essential in spite of the average charge

of the target ion being sufficiently large for the given parameters:
Z;i =18.
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Fig. 14. The R-factor averaged over the coronal
equilibrium state at a temperature of 500 eV for
different targets: 1 — W, 2— Mo, & — Fe.

Figure 14 demonstrates the spectral dependencies of the R-
factor averaged over the coronal equilibrium state of plasma for elec-
tron scattering on ions of various elements (Fe, Mo, W) and T =
500 eV. It is evident that the PR contribution at the given temper-
ature increases with the nuclear charge: from 0.1 (at the frequency
dependence maximum) for iron to 0.6 for tungsten. This increase is
due to the temperature-averaged ionization degree of the target de-
creasing with the nuclear charge growth, which results in increasing
the core effective charge that causes the polarization channel radia-
tion. Note that the average ion charge weakly changes here: 16.3 for
iron and 18 for tungsten. The R-factor maximum shifts somewhat
toward high frequencies in passing from tungsten to iron. The PR
contribution in the process decreases with the plasma temperature,
increase in linked to the average target ionization degree growth; here
the optimal frequency also increases. For example, for T = 1000 eV
and the tungsten target, when gr = 0.34 (Z; = 25), the calculation
gives R:Ipnax ~ 0.43 and wpmax ~ 900 eV.
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The analysis of the PR role, carried out within the frames of
the suggested method, indicates that the polarization channel con-
tribution can be essential also in the cases of light atoms if the
plasma temperature is sufficiently small. For example, for the car-
bon ions and T = 10 eV (gr = 0.32) the maximum value of the
averaged R-factor is about 0.46. Here the optimal (for the appear-
ance of polarization effects) frequency shifts toward higher frequencies
wWmax =~ 80 eV in comparison with the case of heavy elements when
Wmax =~ T'.

The method developed above allows us to express the pho-
torecombination cross section of a quasi-classical electron with initial
energy E through the effective spectral emission as

E+I dk dw
(B, q, 7) = /E Tz (5.44)
In deriving Eqn. (5.44), we have employed the relation between the
effective emission and the process cross-section: « = wo. Equa-
tion (5.44) describes both the static and polarization channels if we
treat dr/dw as the static or polarization effective radiation, respec-
tively.

We have to keep in mind that the classical method employed
does not take into account, naturally, virtual excitations of ion’s elec-
tronic core in a discrete spectrum. Thus, its accuracy depends on the
importance of the discrete spectrum contribution in the target po-
larizability: the smaller this contribution, the higher is the accuracy
of the present consideration. The discrete spectrum is insignificant
for atoms (ions) with closed electronic shells [26], so the method em-
ployed is the most adequate for such targets. In the opposite case,
it usually provides, as a rule, the lower bound of the contribution of
polarization effects in the considered processes.

The core polarization effects in photorecombination can be
characterized by the R-factor in analogy with Eqn. (5.43):

_ doP’l(B)
- dosi(B)
The relative contribution of the polarization channel in the cross-

section of the electron recombination on the uranium ion with vari-
ous ionization degrees ¢ is presented in Fig. 15 as a function of the

R.(E) (5.45)
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IP initial energy. This result is interesting for the interpretation of
experiments on the storage rings [66] when the target ionization de-
gree and electron beam energy can be fixed. As in the case of the
spectral R-factor for the effective emission (Fig. 12), the role of the
ion core polarization in recombination increases with decrease of the
quantity q.

For recombination processes in plasma, of interest is the pho-
torecombination rate averaged over the coronal equilibrium state.
This can be expressed through the correspondent cross-section as:

2T [
a(T,2) =24/ = / 0r (T, q(T, Z), Z)e *wdz.  (5.46)
0

Here we have used average ionization degree (5.39) that depends on
the temperature and nuclear charge.

1.5
Rr

| |
0 0 10 20 30
E, a.u.

Fig. 15. The R-factor for recombination as a
function of the IP initial energy in scattering on
the uranium ion with different ionization degree:
the solid curve for ¢=0.1, the dashed curve for
q=0.3.
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Specifically, using Eqn. (5.44), in the Kramers approximation
we obtain the photorecombination rate in the static channel:

Kr(T I = <3)3/2 8;/_ 1 / Je *In <1+%> dx .
(5.47)

Here Z.(z) is the effective ion charge generally depending on the
IP energy. For sufficiently small temperatures, when the penetration
of the recombining electron into the ion core is small, the effective
charge can be set equal to the ion charge and put out from the integral
sign in the right-hand-side of equation (5.47).

Figure 16 shows the photorecombination rates for quasi-classi-
cal electrons on the uranium ion in the polarization and static chan-
nels as calculated within the frames of the present method. It is
evident that the temperature dependence of the considered photore-
combination mechanisms has the different character. The static chan-
nel rate increases monotonically. For the polarization channel there
is an optimal temperature value (about 3 a.u. in this case). In in-
terpreting the dependencies calculated from Eqn. (5.46), one should
keep in mind that the average target ionization degree also increases
with temperature. This leads, on the one hand, to the ion effective
charge increase, and to the characteristic frequency growth of the
photorecombination emission, on the other hand . The former in-
creases the rate in the static channel and decreases the rate in the
polarization channel. The second factor increases the polarization
photorecombination rate. As a result, the temperature dependence
of the latter is described by a curve with maximum at which the
polarization channel prevails over the static one for a given element.

The results of the present calculations suggest that there is a
sufficiently broad parameter range where the polarization photore-
combination of electrons on multicharged ions is comparable or even
dominates over static recombination. At the same time, one should
keep in mind that the IP energies, for which such domination is effec-
tive, are relatively great and comparable with excitation energies of
discrete electron states in the target core. In that case, as a rule, the
dielectronic recombination provides the main contribution to recom-
bination, and the role of the polarization channel could prove essential
in the intermediate energy range. This situation is realized, for ex-
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Fig. 16. The recombination rate of the uranium
ion with a temperature-dependent ionization de-
gree: the solid curve shows the polarization chan-
nel, the dashed curve indicates the static channel.

ample, in the electron —ion recombination of Fell ion, whose rate was
calculated in paper [69] by the R-matrix method including 83 states
of the electron core of FeIIl ion. In [69] the temperature dependence
of the process rate was found with taking into account the contribu-
tion of photo- and dielectronic recombination in a self-consistent way.
It was discovered that there is a broad temperatures range 0.2 -2 eV
inside which the calculated recombination rate exceeds by several
(up to five) times the total contribution from static and dielectronic
channels. This is just the case where the polarization recombination
mechanism is essential, which was not explicitly distinguished in this
paper. Figure 17 presents the results of calculation for the electron—
ion recombination rate of Fell in the above temperature range car-
ried out within the frames of the classical method using Eqns (5.44) —
(5.46) for the Maxwell electron velocity distribution, together with
the results of paper [70]. In this figure also plotted are the tem-
perature dependencies of the photorecombination rate in the static
channel calculated in [70] and in the present paper. It is seen that the
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Fig. 17. The temperature dependence of the re-
combination rate of the Fe?* ion:

1 — the total recombination rate as calculated in
[69] with account for contributions from 83 states,
2 — the total photorecombination rate as calcu-
lated in the present paper assuming the construc-
tive cross-channel interference,

&8 — the photorecombination rate calculated in the
Kramers approximation according to Eqn. (5.47),
4 — the static photorecombination rate from pa-
per [70],

5 — the dielectronic recombination rate from pa-

per [71].

simple model employed here allows us to reproduce (with reasonable
accuracy) the results of very awkward calculations [69] and give them
a visual physical interpretation. Besides, from comparison of curves
describing static photorecombination, we find good accuracy of the
Kramers approximation in the considered temperature range.

Thus, in the present section within the frames of the plasma
model for the electronic core of ion and RA for IP, we have analyzed
the role of PR both for non-averaged and averaged over the coronal
equilibrium state emission spectra and photorecombination rate in
dependence of the problem parameters. It has been shown that the
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polarization channel contribution can be comparable to and can even
exceed the ordinary (static) channel contribution, including the case
of multicharged ions, provided that the number of bound electrons
in the core is sufficiently large. For a given fixed temperature, the
role of the polarization effects in emission increases with the growth
of the target nuclear charge owing to the electronic core effective
polarization charge increase. With increasing temperature the ion
ionization degree increases and the relative PR intensity decreases.

It has been demonstrated that the polarization mechanism
contribution to the photorecombination rate can prevail over the
static contribution in the case of the sufficiently heavy ions in the
certain interval of energies and temperatures.

In conclusion we note that the results of the present consid-
eration should be taken into account, in particular, for correction of
plasma diagnostic methods. Indeed, the account of the polarization
channel changes the relation between the intensity of the experimen-
tally observed continuum spectrum of emission and the average ion
charge. This relationship, which had been traditionally calculated in
the static approximation, should be added with the correction mul-
tiplier 1 4+ R. As a result, the real average ion charge turns out to
be less, generally speaking, than its value as derived in the static
approximation.

5.3. The transition bremsstrahlung of thermal
electrons on plasma ions

The transition BR on ions in plasma is a special case of the
polarization BR when the Debye “coat” around charged particles in
plasma serves as an atom —target. For fast IP this problem is consid-
ered in Sect. 6 of the present review. Here we consider the case for
incident electrons with thermal energies when the Born approxima-
tion for BR can not be apply [72]. Then, however, the quasi-classical
method can be employed. The dipole moment induced in the IP
target core in this approximation reads

R (R 9
Dy (R,w) = _ﬁ/o B(r,w)dnr dr. (5.48)



92 V. A. Astapenko et al

Here R is the IP radius—vector, S(r,w) is the dynamic polarizabil-
ity spatial density. Dipole moment (5.48) determines the spectral
effective emission in the polarization channel in accordance with the

formula: p W .
Kpol (W w b
Sl — 2 | D) P dp. (5.49)

Here D‘Ijol(w, p) is the Fourier image of polarization dipole moment
(5.48) at frequency w calculated along the incident particle trajectory
characterized by the impact parameter p. In the case of the Debye

sphere, for the polarizability spatial density the high frequency ap-
proximation is valid:

wWhe(r) — me(r)

drw? W2

Boo(w) =

(5.50)

unless the emission frequency w is too close to the average electron
plasma frequency wpe = /477 (7 is the average number density of
plasma electrons). By expressing the electron number density inside
the Debye sphere in the form

ne(r) = Z;i  exp(—r/rpe)

= 5.51
47rr]23e T ( )

where rpe is the electron Debye radius, for the induced dipole mo-
ment we obtain from Eqn. (5.48):

D 1 R
D\ (w,R) = = 75 Ne(R0). (5.52)
Here N¢(R) is the number of plasma electrons inside the sphere of
radius R which is given by the expression:

No(R) = /0 " drne(r)r?dr = Z; [1 = e M/ (14 Rfroe)| . (5.53)

To calculate the total effective (summed over the impact parameter
and frequency) emission of electron with energy E in polarization
channel on the Debye sphere (or the total bremsstrahlung losses), we
proceed from the expression:

E/h
Kpol = / dkpol (w) . (5.54)

Wpe
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Substituting Eqns (5.48) and (5.49) into it we have:

/h /
wo (B) = o / pdp [ [ dear / it

R(t)R(t
W N(R(®#))N(R(#)) dw . (5.55)
Here the lower limit of integration over frequency is set at zero. In
reality, transversal photons are known to propagate in plasma if the
condition w > wype is fulfilled. The above substitution is adequate to
the ideal plasma case when the characteristic correlation time in the
scattering electrons motion is less than the inverse plasma frequency.
Next, we use the equality

oo ’
/ ) duy = w6t — t') (5.56)
0

(the upper limit is set infinity in accordance with the quasi-classical
condition & — 0). We employ Eqn. (5.55), pass to the integration
variable R (after such a substitution the lower limit of integration
becomes equal to the minimal distance between the IP and the ion
rmin(p) and the result increases by two times due to the sub-integral
function in Eqn. (5.55) being even relative to the change of the time
sign). After integrating over the impact parameter p, as has been
shown in [45], we find (here and below we use atomic units):

WD) _ Up(r)

8T ® 9 9
pol = m/ﬂ prI(T‘) 1- T redr. (557)

Here Up(r) = —Zjexp(—r/rpe)/r is the screened (Debye) potential

of an ion in plasma, fpe1(r) is the “polarization” force defined by the

expression:

Ne(r)
r2

fpol(r) =

This force (of repulsion) acts on IP from the target electrons placed
inside the sphere of radius R. With the same force (in accordance
with the 3rd Newton’s law) IP accelerates the target electrons, which
move as a single negative charge cloud, thus producing BR.

(5.58)
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We also provide here the expression for the total effective emis-
sion in the static channel [25]:

D 87 00 UD(T)
Hét ) = PN /rmin fa(r) \/1- " r2dr. (5.59)

Here fy(r) = —dUp/dr is the ordinary “static” force that defines
the IP trajectory.

Note that in spite of a large similarity between Eqns (5.57) and
(5.59), there is an essential difference between them: integral (5.59)
diverges in the lower limit (in the quasi-classical case as [, r~>/2dr),
while the integral in Eqn. (5.57) converges in the lower limit, the
latter being because the plasma electron charge Ne(R) that radiates
by the polarization channel tends to zero as R decreases, as follows
from Eqn. (5.53).

Employing Eqns (5.53) and (5.57) and the expression for the
Debye potential, we obtain the total effective emission in polarization
channel in the form:

2
(py 8w Z (2aT>
K = & . 5.60

pol ™ 33T Tpe  \7TDe (5.60)

Here we have introduced the function:

®(x) = /000[1 (4721 + (frerdr/i (5.61)

The parameter ap = Z;/2T is the Coulomb scattering length of elec-
tron of energy T on an ion with charge Z;. Note that the ratio
2ar/rpe is inversely proportional to the plasma non-ideality param-
eter. For the ideal plasma 2ar/rpe < 1. The function ®(z) slowly
increases with increase of the argument, so that for the ideal plasma
we can put ®(£) = 0.5. Then expression (5.60) takes the form:

)y 4Ar 7}
kD) = . 5.62
pol " 3¢3/2T e (5.62)

Equation (5.62), which is valid for the quasi-classical IP move-
ment, coincides (per one ion) with the expression for the total power
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emitted in the polarization channel obtained in [73] for the straight-
flying over-thermal electrons.

Thus we can conclude that under the ideal plasma conditions,
the character of the IP movement weakly affects its total effective
radiation in the polarization channel.

For the effective static BR in the Coulomb field of an ion,
considering the cutting off of the integral at the lower limit, we obtain
from Eqn. (5.59):

(5.63)

Kst
9¢3 Tm

_ 8nZ;/2T l(mm + 2)5”/2 - 1]
Here z,, = (2v/2T/Z)%*.
In the limit z,, < 1 equation (5.63) simplifies to the form:

8V2m o

W i . (5.64)

Rst =
Result (5.64) differs from the Kramers formula only by the
numerical coefficient about 0.8, which is explained by using the cut-
off radius with an approximate numerical factor.
From equations (5.62) and (5.64) and using the expression for
the Debye radius, we obtain the ratio of polarization and static chan-
nel contributions:

D
K
RL (116, T) = ﬁl >~ 3 V;f" . (5.65)
S

As is evident from Eqn. (5.65), plasma must be as cold and dense as
possible for the contribution of polarization effects into BR on an ion
with the Debye screening to be appreciable.

Let us evaluate numerically the quantity R for a laser plasma
with the following parameters: n, ~ 7-10® cm ™2, T ~ 1 eV,
then R ~ 10%. If ne ~ 7-10% cm 3, then R ~ 100%, but then
the plasma parameter becomes less than unity and plasma turns non-
ideal. It is interesting to evaluate the contribution of the polarization
BR for plasma of the inner regions of the Sun: ne ~ 5.7-10%° cm ~3,
T ~ 1550 eV. For these values with Eqn. (5.65) we find: R ~ 15%.



96 V. A. Astapenko et al

Let us rewrite the expression for the ratio # through the
plasma ideality parameter ¢ = (47/3)rdne:
nl/6
R(n,() ~1.24 CQT (5.66)
As is evident from this formula, for a fixed plasma ideality parame-
ter ( theratio R is weakly depending function on the plasma electron
number density.

The above consideration entails that the polarization contri-
bution to the total bremsstrahlung losses of plasma electrons on the
Debye cloud around an ion in a non-degenerate plasma can be com-
parable with the contribution due to the ordinary (static) BR only in
the case of the sufficiently cold and dense plasma, when the parame-
ter of ideality ( is about unity. Otherwise, the ratio of contributions
due to polarization and static channels does not exceeds 10— 15%.

The spectral R-factor in the RA frames can be obtained us-
ing Eqns (5.8) and (5.9) and the corresponding expressions for the
potential and electron density of the Debye sphere:

2 4

R (w) = |1 — % R (ry, < Tpe) & i (:—]‘;e> . (5.67)
Here 1, = reg(w) is the solution to equation (5.10). The inequality
7y < rpe employed in Eqn. (5.67) is correct for the ideal plasma in
the frequency range w ~ wc = v3/Z;, i.e. for frequencies of the
order (and above) the typical Coulomb frequency. Equation (5.67)
implies that the polarization channel contribution to the spectral BR
cross-section for thermal energy electrons on the Debye sphere at
frequencies w > wpe, calculated within the rotation approximation
frame, is small. The estimate shows that in this case R (w) < 1%.
The law of R(Y (w) decreasing with frequency can be explic-

itly obtained by employing the expression for r, in the Coulomb

field: r$ ~ ¢/27Z;/w?. Then from Eqn. (5.67) we find:

1 (2z)Y3
Ry(w) ~ o CAT

N T o (5.68)

Since the spectral effective emission in static channel weakly depends
on frequency in the considered range, Eqn. (5.68) yields the frequency
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dependence of the spectral effective emission of thermal electrons on
the Debye sphere in polarization channel in the rotation approxima-
tion:

dﬁ(rot)(w)
—_— X W

pol
dw
Dependence (5.69) somewhat differs from the decreasing cross
section of the transition (polarization) BR of fast over-thermal elec-
trons in the frequency range w > (v/v7e) wpe, according to which

wloo

(5.69)

dml(z)?lt)(w)/dw xw ™t (5.70)
5.4. Quantum calculation (by the incident particle
motion) of the effective radiation
on multielectron ions

In this section, the plasma model for the ion— target is em-
ployed to calculate the polarization BR in quantum description of
the motion of IP scattering on ion.

Quantum calculation of BR in statistic channel for the
Thomas —Fermi ion was first carried out in papers [55, 56]. This cal-
culation demonstrated a good accordance with consistent quantum-
mechanical calculations for the Hartree — Fock target core and, more-
over, confirmed a high accuracy of the rotation approximation of the
Kramers electrodynamics [47].

The operator of the IP motion perturbation, producing BR in
polarization channel, can be recovered from expression (5.47) for the
induced dipole moment in the ion core. The corresponding formula
has the form:

RE(w)

Vool (R, w) = e

R
/ B(r,w) 4mr? dr . (5.71)
0

Here E(w) is the electric vector in the radiation field. Essentially,
this formula describes the non-dipole potential of the IP interaction
with the perturbed ion core, which is expressed in the presence of the
IP radius—vector R module in the upper limit of integration. This
fact has a simple electrostatic interpretation: the external charge



98 V. A. Astapenko et al

interacts only with a part of the electronic cloud inside the sphere of
radius R if the process occurs without exciting bound electrons of
the target.

Quantum calculation of the radiation intensity is significantly
simplified due to spherical symmetry of the scattering potential. In
this case the standard method [2] of the IP wave function expansion in
spherical harmonics or in the quantum number of the orbital moment
I can be applied. The component of wave function corresponding to
a fixed value of [ is the product of the radial and angular parts.
The angular part is known to be the spherical function. The radial
part u(r,l,p) satisfies the Schrodinger equation with the following
boundary condition at infinity:

u(r — oo,l,p) — % sin (pr +% In(2pr) — gl+ 5(1,;0)) . (5.72)

Here p is the IP momentum, §(I,p) = §¢(I,p) + Ad(l,p) is the to-
tal phase shift equal to the sum of the Coulomb ¢€(l,p) and the
non-Coulomb Ad(l,p) phase shifts which can be calculated from the
formula [74]:

SID(A5 l p 2 / <_ - |U ) U(Tal7p) UCOUl(r’l,p) 7’2 d’/’-

(5.73)
Here u r,l,p) is the solution of the Schrodinger radial equation
with the Coulomb ion potential, U(r) is the IP potential in the ion—
target field (5.37).
For numerical calculations it is convenient to use the auxiliary
radial wave function: w(r,l,p) = r=* wu(r,l,p). The corresponding
Schrodinger equation reads:

Coul(

1
o +2 l% v+ (p2 —2 U(r)) v=0 (5.74)

(the prime denotes differentiation with respect to radius) subjected
to following boundary conditions:

v(0) =1, v'(0)=——". (5.75)

Here Z is the ion nuclear charge.
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In order to satisfy asymptotic (5.72), we introduce the normal-
izing coefficient N :

N= {rl+1 w2+ [p_lv’]Q} . (5.76)
r—00
Finally, we have for the wave function:
2
u(r,l,p) = <ﬁ> r (1, p). (5.77)

With the use of function (5.77) for the BR spectral intensity we arrive
at the following expression:

dw 2 & ) ,
=T33 I+1) ||M M . 5.78
do  33pp; g( +1) [| L]+ Mgl ] (5.78)

Here we have introduced the radial matrix elements M; 1, M1,
taken between wave functions (5.77) of the module of the force ef-
fecting on IP and producing BR in the certain channel. Moreover, for
the static channel the expression for the corresponding force is given
by Eqn. (5.2) — this is an ordinary force determining the IP motion
in the static field of the ion—target.

The absolute value of the force that produces radiation in po-
larization channel can be recovered from Eqn. (5.71). It is determined
by the non-dipole dynamic polarizability of the ion core and reads

frol = il /5(7’,w) 4 r? dr . (5.79)

Since the expression for the spatial density of polarizability has, gen-
erally speaking, an imaginary part, polarization force (5.79) and the
corresponding matrix element M;; have the imaginary components
together with the real ones. The radial matrix element of static
force (5.2) is, naturally, purely real.

The total matrix element in Eqn. (5.78) is the sum of the static
and polarization terms. Their real parts produce the interference
term in the expression for the BR intensity, and the imaginary part
of the polarization matrix element provides no contribution to the
cross-channel interference.
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Formally, the infinitive series in the quantum number of the
orbital momentum [ in expression (5.78) for the BR intensity rapidly
converges for strongly inelastic processes. For example, for w/E =
0.7—0.9 (in the IP scattering on the KII ion) the main contribution
to the BR intensity is provided by the first 3—4 terms of this series.
Note that the situation is quite opposite for weakly inelastic processes
when the series in [ converges extremely slowly.

The analysis of the calculated data indicates that at low and
high frequencies the main contribution to the polarization BR is due
to the real part of the induced dipole moment in the target core. At
the “moderate” frequency range (I, < w < Z), the imaginary part
of the core dipole moment dominates in the polarization channel.
This conclusion also follows from the PBR calculations within the
frames of the random phases approximation with changes for the
core polarizability [30].

The results of quantum calculations of the spectral R-factor
and the relative contributions of the interference term into the BR
intensity in scattering of IP on the KII ion are shown in Fig. 18
for two values of the ratio w/E (Fig. 18(a) and (b), respectively).
The calculation has been performed assuming the local plasma den-
sity approximation and using the ion core electron density as in the
Thomas— Fermi— Dirac model. Here it should be noted that the
statistic approximation is known to describe well an atom’s (ion’s)
properties in the localization region of most its electrons. In the
near-nuclear region and at the ion’s boundary, where one-electron
effects become significant, the accuracy of the statistical approx-
imation noticeably worsens. In particular, in the statistic model
frames, at the ion’s boundary the electron density and local plasma
frequency vanish. Here single-electron excitations significantly con-
tribute to the polarizability. They should be taken into account
at frequencies of the order of the core ionization potential, where
the size of electronic orbit gets larger than the ionic core size in
the statistical model. In fact, here in addition to the collective
plasma frequency of electron density oscillations, proper electron os-
cillations in the core field are manifest. This effect can be approx-
imately taken into account by shifting the frequency w in the for-
mula for the target polarizability by the amount Aw such that the
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photoabsorption maximum fall at the single-electron ionization po-
tential.

Figure 18 demonstrates that the spectral R-factor has a max-
imum near the target ionization potential, whose width decreases
with the decrease in the inelasticity degree of the process (the ratio
w/E); at the same time the maximal value of the R-factor somewhat
increases.

The main difference from the results obtained in the rotation
approximation is that the spectral R-factor calculated for the IP
quantum motion decreases more sharply with frequency in the “mod-
erate” frequency range I, <w < Z.

Figure 18(b) demonstrates the value and character of the cross-
channel interference as a function of the BR frequency. At frequencies
w < I, the interference has destructive character (decreases the total
intensity of the process) and has an appreciable value. At I, <w < Z
the interference term changes the sign and increases the total intensity
(constructive interference) by staying quite large. The cross-channel
interference is negligible at low frequencies. At high frequencies its
contribution is about 10— 20%, decreasing as frequency increase.

As the inelasticity degree of BR gets smaller, the role of the
interference diminishes because the spatial formation regions of the
static and polarization radiation overlap smaller. This is seen from
Fig. 18(b), which also suggests that for a less inelastic process the
frequency range of the destructive interference proves somewhat ex-
tended toward high frequencies. For w < I, the character and am-
plitude of the cross-channel interference weakly depend on the degree
of inelasticity of the process.

Thus, the analysis performed in this Section for polarization
and interference effects in a strongly inelastic BR on an ion for a
quantum IP motion, while demonstrating qualitative adequacy of
the generalized rotation approximation developed earlier, has notably
corrected this approximation in the quantitative aspect by complet-
ing the general phenomenological picture with the cross-interference
studies. The main conclusion from the quantum treatment is that
the polarization channel contribution to the strongly inelastic BR in-
tensity increases from zero as a power law, is mostly significant near
the ionization frequency of the ion— target, and drastically falls off
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V. A. Astapenko et al
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The results of quantum (on the IP mo-

tion) calculation of the spectral R-factor (a) and
the channel interference contribution ¢ to the BR
intensity (b) performed in the frames of the static
model for two values of the inelasticity parameter:
1—w/E =09, 2—w/E =0.6 in electron scat-
tering on the ion KII [25].
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with further frequency growth due to IP penetration into the target’s
core. Here the width of the frequency maximum for the R-factor
increases with the process inelasticity.

6. Polarization channels of fast particle
radiation on atoms, in plasma,
and in a dense medium

6.1. Polarization bremsstrahlung radiation of a fast
charged particle on a Thomas —Fermi atom

The PBR spectral cross sections (3.40) and (3.41) obtained in
Sect. 3 are valid for w > I where I is the characteristic ionization
potential of the atom. In the case of multielectron atoms, this quan-
tity is rather uncertain so that the applicability range of the high
frequency approximation must be specified.

At the same time, polarization effects in BR should be most
substantial exactly for multielectron atoms. Calculation of the dy-
namic polarizability of a multielectron atom that determines the PBR
cross section is a difficult quantum mechanical task, which has to be
solved anew for each particular target. In this connection, utilizing
simple universal models relevant for the assessment of the polariza-
tion BR cross section and revealing general qualitative relationships
of this process seems to be useful. One such models is the local
electron density (or local plasma density) method first suggested by
Brandt and Lundqvist to calculate the photoabsorption cross section
by multielectron atoms [3] (see Sect. 2.1).

The spectral cross section of polarization BR of an electron on
atom within the frames of the first Born approximation is described
by Eqn. (3.33), which can be simplified for the process without target
excitation, as was shown in the previous Section (here and below we
use relativistic units with A =c=1):

dO’PB
dw

Here df2y, is the solid angle of the photon emission direction, k,w the
wave vector and the bremsstrahlung photon frequency, respectively,

WP
~ 2n)dv /dQn dq|a(w,n + k)2 [nA(¢)]? 0w +qv). (6.1)
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q = py — p; is the change in the incident particle momentum, and
A(q) vector—potential of the incident particle’s field in the momen-
tum representation which in the axial gauge (A9 = 0) is given by
Eqn. (3.29). For further calculation of the BR cross section we re-
strict ourselves to the Born— Bethe approximation in which we can
put

a(w,q) = a(w)f(pa — ) (6.2)

where 6(x) is the unitary step function. The characteristic atomic
momentum will be taken in the Thomas— Fermi form p, =
Z1/3 /(bag) . Then from (6.1) and (6.2) we have:

O'PB w3 a
o™ _ 4_|a(w)|2{9(p 4 —w) [y (w0, pa — w) + Ho(w)]

dw 2 1+V
V
+0 <w - f”jr V) H <w, %) } , (6.3)
Pa
qdgq
H min = ) 9 9\9 9
1(w7q ) / Gl(q w) (qQ _w2)2
Gmin
Pa—w
qdg
H = —
2(“)) / GQ(Q,UJ) (q2 _w2)2
w/V
Here
2 2 4
_pra—(g-—w) 27,2 2 9 o w
Gl ——2wq lw vV +q 2w + 2q2V2

3

3
(pi - (q—w)2> 1
2wq

5 4
G w <[/ 3 3q

5 3wt
2 _ 9 2 (6.4)
¢ = 5w +2q2V2] :

At low frequencies w < p,V, when the first term in curly
brackets contributes mostly to the cross section, Eqn. (6.3) can be re-
duced to the known expression for the polarization BR spectral cross
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section of a relativistic incident electron [61] (see also Eqn. (3.38) for
the spectral-angular PBR cross section):

doB  16w3|a(w)]? 2vp,V
do 3|Vg ! <w(¥]f V))’ w<paV (65)
Here v = (1 —V2)~1/2 is the relativistic Lorentz-factor, a(w) dipole
dynamic polarizability of the atom —target.
Passing in Eqn. (6.5) to dimensionless variables, we get the fol-
lowing expression for the spectral cross section of polarization brems-
strahlung radiation:

162268 dv 29V
PB 2 2
— —1
w™0) = S s Lo (2 )
= Z2d6"B(v). (6.6)

Here the function déPB(v) is introduced which can be naturally
called the reduced cross section of the process. It reveals an ap-
proximate scaling over the w/Z parameter, while the remaining de-
pendence on the charge has logarithmic character.

The spectral cross section of ordinary (static) BR with al-
lowance for the nuclear field screening in the case of inelastic electron
scattering is given by the expression

_ 162% dw ln{ |4
V2 w

do™B(w) = —}, w < pa V. (6.7)
Pa

The cross section ratio of polarization and static BR (R-factor) at
frequencies w < p,V for relativistic particles is

137y
Ao o, {0 137
R(V7 Z,’Y) = oS8 b |V ﬂ(V)| ln{T’g}, v < m . (68)

R-factors calculated as a function of dimensionless frequency
v for different v and v < 137/Z%/ are shown in Fig. 19.

Analysis of general expression (6.1) indicates that at high fre-
quencies w > p,V the emission diagram of the polarization chan-
nel narrows, so the effective emission angles satisfy the inequality
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1.5 :

R = do?°!/do*t

Fig. 19. The R-factor dependence on the reduced
frequency v calculated for fast electron BR on a
Thomas — Fermi atom with nuclear charge Z = 30
at different values of the relativistic Lorentz-factor
v =3,10,30.

9 > \/pa/w. Within the frequency range p, < w < 7?p, there
are the BR angles y~!,9 > \/p./w where a polarization mechanism
dominates over the ordinary (static) radiative mechanism. The PBR
emission beam getting narrow is presented in Fig. 20.

As seen from Eqn. (6.6), dynamical properties of a statistical
atom within the Born—Bethe approximation are determined by the
function g(v) = |B(v)/BM (v)|, which can be approximated (within
the £5%-error) as follows:

o) = (1-e22)" (6.9)

Within the Born— Bethe approximation it is easy to obtain a
simple analytical expression for fast electron bremsstrahlung losses
on statistical atom via polarization channel within the given spectral
range 0 < v < v . To this aim, Eqn. (6.9) can be simplified to the
form

ga(v) = /(v = 1B —v) + 1 (6.10)
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Fig. 20. The PBR angular dependence on an atom
(Z = 30) for different bremsstrahlung photon en-
ergies w = 5 keV (curve 1), w = 15 keV (curve 2),
w = 50 keV (curve 3); the IP velocity is V = 0.9¢c.

Substituting Eqn. (6.10) into the formula for the spectral cross
section and integrating over frequency the expression for spectral
losses within the limits specified, we find

, 1623
W}E)l B(l/h) ~ 33772 h (1 + In(Vmax/nun)) — In\/Vmax — 3/4] ,

1 < vy < Vmax - (6.11)

Here vpmax = YV/(bZ2/3).

Polarization BR effects are large and their description rela-
tively simple in the case of fast electron scattering on negative ions.
This problem was studied in [52] for the negative hydrogen ion. The
following spectral cross section was obtained within the Born—Bethe
approximation:

4V; 1
do(w) = Vi dw 6dw

T3 w U 38V

1+ Paw) n 7

) . (6.12)

where oy, is the electron scattering transport cross section on neu-
tral atom, A is an uncertain coefficient of the order unity. In equa-
tion (6.12) the first term comes from scattering on a neutral atom

ow
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and the second from scattering on an weakly coupled electron, with
the first term in the square brackets describing the static channel and
the second term the polarization channel. The frequency dependence
of the total BR cross section calculated using Eqn. (6.12) represents a
curve with maximum at which the cross section takes the value almost
two times as large as that obtained ignoring the polarization term.

6.2. Fast charged particle polarization BR cross section
on ions in a plasma

Consider first bremsstrahlung radiation caused by the conver-
sion of a virtual photon of the incident particle’s field into a real
one on plasma electrons. Its cross section is given by the term in
Eqn. (3.66) proportional to the electron’s dynamic form factor. The
corresponding expression with account of the explicit form of S (q)
(3.75) reads

I (e ©)( ]2 o & i
P - | ——
do?(k,q) = <m> (A" lonel; |
~1(e) |2
1-—¢ w dw dQy d
2 kaq
+ [oni2 géq } Gt (6.13)

The plasma component density fluctuations entering this expression
are given by the 2-d formula from (3.77).

The terms in the curly brackets in Eqn. (6.13) describe the
process of virtual photon scattering into real photon on plasma elec-
trons. The first of them comes from the energy — momentum ¢ trans-
mission to a subsystem of plasma electrons. The second describes
the ¢ 4-vector transmission to plasma ions via the IP field interac-
tion with plasma electrons, which is the consequence of the Coulomb
interaction between electron and ion plasma components (Debye’s
screening).

Consider first the fraction of cross section (6.13) determined
by the second term in the curly brackets. It coincides with the po-
larization (transition) BR cross section in collision of a fast charged
particle with a point-like plasma ion at frequencies w > wpe consid-
ered in papers [73, 75]. To make sure of this, note that for an ion at
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rest and ignoring recoil the following limiting transition holds:

lim —— exp —L)?Q
vri—0 /27 |q|VTy 2q°Vi

Here the situation is considered when the inequalities hold: ¢° >
|a| Ve, w > wpe. In this case, virtual photon scattering on the elec-
tronic polarization charge around IP can be disregarded. Ind%ed, this
~ L
So PBR is caused solely by the proper IP field scattering on the elec-
tronic charge around ion, which is taken into account in Eqn. (6.13).

Considering Eqn. (6.14) and the explicit form of the IP elec-
tromagnetic potential (see Eqns (6.5) and (3.29)), we find the PBR
cross section on the Debye sphere around ion in a plasma:

do®\(k,q) = 1 (f)Q [0, (g + wv)]? (47re0)

] =5(¢"). (6.14)

charge is proportional to the small ratio ‘(1 - éé(e)) / €f]

Vo \m /) (a?—(q°)%€)? \ &f
~l(e)
1—¢ wdwdQdq
0y 72 a k 1
R e )

=aqvt+w-kvo, ¢!=¢"-w, aq1=q-k.

This cross section coincides with the polarization (transition) PBR,
cross section of fast particle on ion at rest in plasma for w > wpe,
determined by matrix element (21) from papers [73, 75].

Thus, the consistent quantum mechanical treatment of PBR
in plasma has enabled to establish the unique physical nature of this
phenomenon and studied earlier transition BR.

Now we consider the cross section that corresponds to the first
term in curly brackets of Eqn. (6.13). It describes emission due to
conversion of virtual photons of the IP field on individual plasma
screened electrons. The term “individual” in this case means that
the momentum —energy excess is transmitted to one plasma electron.
The explicit form of the dielectric peremeability tensor components
for the considered case |¢°| < |q|Vre, |¢°] > |a|Vri:

1 w 1 \%
~l pi ~l ~ o Te
€1+ —qu% - @2 € (e) =1+ _q2r]23 , D=

6.16
op, (6:10)
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suggests the PBR cross section on individual plasma electrons be
small at |q| < 1. This corresponds to the well known in plasma
physics fact of the long-wavelength Coulomb perturbations’ screen-
ing [40].

If we rewrite the factor €,§(i) /€
Eqn. (6.13) in the form:

l

q entering the first term of

e él
q q

~
G (6.17)

the first term in Eqn. (6.17) will describe the IP field scattering on
the “naked” (not screened) electron, the second — on the polariza-
tion charge around it. In terms of papers [73, 75], the first type of
radiation is the traditional BR on plasma electrons, the second — the
polarization (transition) BR on them. The total emission is the super-
position of these two channels. Interference between them drastically
decreases the cross section at |¢°| < |q|Vre. This is explained by
the polarization electronic charge around a singled-out electron hav-
ing the opposite sign, and the IP field scattering amplitudes on the
electron the polarization charge around it are close in the absolute
value and opposite in sign if |gq| — 0.

The situation pertinent to the IP field virtual photon scatter-
ing on ion in plasma is different. Here one can neglect scattering on
the charge of the ion itself due to its large mass, so a non-compensated
scattering on electronic polarization charge around ion remains. The
above considerations make it clear why it is plasma ion (ion + its elec-
tronic “coating”) that radiates at |g| < rBl, although at such mo-
menta transmitted its effective charge is negligible: only charges with
low mass (electrons of the Debye “coating”) “show up” in radiation.

Thus the term in the total PBR cross section in plasma pro-
portional to the electron dynamic form factor describes the superpo-
sition of polarization (transition) BR on plasma electrons and ions
and static BR on plasma electrons.

Note that the contribution of bound electrons to the dielectric
permeability for transition BR in rarefied plasma (the criterion will
be given later) is unimportant. Indeed, the PBR cross section con-

2
tains the factor ‘(éé(e) — 1) /&1~ (14 |qf*r})~? and thus is small




Plasma models of atom 111

for |q| > rp'. At the same time, energy - momentum conservation
implies that |q| > w/Vo. These relations indicate that PBR on the
Debye sphere is small within the frequency range w > Vy/rp. Thus
the spectral range where transition BR is significant in a low density
plasma corresponds to low (in atomic scale) frequencies, for which
the ionic core polarizability can be put equal to its static value. This
is of the order of the cube of the ionic radius R;. But then the ad-
dition to dielectric permeability from bound electrons proves to be
insignificant, since the inequality wge Jw? > n; R} holds at the consid-
ered frequencies. The situation changes for PBR on bound electrons
belonging to the ionic cores, which will be considered below.

For a non-relativistic incident electron with simultaneous al-
lowance for static and polarization channels in BR on the Debye
sphere, the effect of “undressing” of plasma ion appears [76], which
is similar to the atom “undressing” effect in the high frequency
limit [77], when the under-logarithmic factor in the process’s cross
section coincides with that for a non-screened ion. The only differ-
ence is in the frequency intervals of the effect: for plasma wpe >
w < Vo/rp, for atom I > w < Vy/R,. If the incident particle
is a positron, interference between static and polarization channels
can lead to the differential (over the momentum transmitted) PBR
cross section vanishing for |q| = rp 1 when ef] = 2, which also was
predicted theoretically for PBR on atom [77].

Now we reproduce the result of calculations of ordinary (static)
BR in plasma with transmission of the energy — momentum excess to
a collective plasma excitation, a plasmon [78]. This process occurs
near the zeros of the longitudinal part of the dielectric permeability
in the expression for the photon propagator, as was noted above when
discussing PBR.

The expression for the corresponding cross section can be de-
rived using standard rules of quantum electrodynamics in a medium.

The following dispersion law for plasmon can be used [40]:

2
K
KY = wpey |1+ 3=, |kl <kp= rot. (6.18)
K
h
In the non-relativistic limit for the IP motion, the differential cross
section of BR accompanied with the generation of a plasmon can be
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found to be:

_ dw [ €2\’
dofi (k,q) = (2m)0(q] + wpe) — <—°>

mo
‘;’;"’ [nqq] (N?L 4+ 1)dndq,  (6.19)
0
lg <rmpt.

Here N_, is the occupation number of the plasmon mode with the
4-vector —q which in the case of a non-degenerate plasma is NP! ~
T/wpe .

In this derivation, Eqn. (6.19) was integrated over the plas-
mon’s wave vector with account of its dispersion (6.18). The spectral
intensity of this process in non-degenerate plasma can be obtained
from (6.19) to be

g _ 16 () V(1
dw 3 \m Vo P \ 97

{1—— 1+3< ) VTe
Wpe

w < wpe

} . (6.20)

In deriving (6.19) and (6.20) we have taken into account that the
plasmon’s wave vector is bounded from above by the value of the in-
verse Debye radius; at large Debye radii plasmons are not well-defined
excited states. This results in the upper limit of the effect to appear
wh = Yo wpe - The numerical estimate of the ratio of spectral inten-
sity (6. 18) to that of static BR in plasma for the standard (according
to Pippard) metal is approximately 5%. For a high frequency plasma
mode in the alkali-haloid compounds, which is formed by valent elec-
trons with higher plasma frequencies, the relative value of the effect
under consideration must be larger.

Now we turn to consideration of bremsstrahlung radiation in
plasma caused by the IP field conversion into a bremsstrahlung pho-
ton on bound electrons of the ion’s core in plasma. In a low-density

Te
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plasma at frequencies w < Vo/rp the most significant is emission on
Debye “coatings” screening ions, while the ions themselves may be
treated as point-like. However, for broader frequency range w < m,
the contribution to BR from bound electrons should be taken into
account.

The BR cross section due to bound electrons interaction with
photons is given by the term of Eqn. (3.66) proportional to the dy-
namic form factor of the ion S0 (g):

i,bound

do?  (k.q) — (gD)* A0 2 ka2
o houmall @) = = A )] e(w, k)]
2

+|5ne|§

~l(e)

€q

X {|5n1|3 ——

=
€q

1- ¢l

2
waw a Qk 1iq

(27)?

=
€q

In deriving (6.21) spherical symmetry of the ionic core was assumed.
Note that cross section (6.21) does not take into account the possible
excitement of the ion’s electronic subsystem during BR.

Plasma has a double effect on the process under study com-
pared to the case of BR on an individual ion in vacuum. Plasma
ions mutually screen each other, which is described by the factor be-
fore the first term in the curly brackets in (6.21). The second term
in the curly brackets describes PBR with transmitting the energy —
momentum excess from bound electrons of ions to plasma electrons
due to interaction of ions with plasma electrons. Besides, interaction
of the IP field with plasma produces a “dressing” of the correspond-
ing virtual photon described by the photon propagator (3.47). This
impact of the medium is included in Eqn. (6.21) as well. In a low-
density plasma, the mutual screening of ions and the energy —momen-
tum excess transmission from bound to plasma electrons can be ne-
glected. Indeed, it is easy to show that these effects are important at
la| = |q1| < rp", as follows from the form of ion’s dynamic form fac-
tor (3.67) and expression for the longitudinal dielectric permeability
in low frequency limit (6.16). But energy — momentum conservation
demands such transmitted momenta be possible only at frequencies
w < Vy/rp when polarizability of bound electrons is low. So for
lg| < rp' the corresponding bremsstrahlung radiation is weak. Po-
larizability of bound electrons takes a noticeable value (the core gets
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“defrozen”) at w > wl(n)m (wr(:l)in is the minimum exciting frequency of
the core), but then |q| = |q1| > ", since for the typical parameters

of non-degenerate plasma w) > Vo/rp. So in Eqn. (6.21) one can

min
assume

~(e) |2 LU |2
eti(le) = 17 1 _~l€q(1) B O .
€q €q

Bearing in mind the above considerations and the explicit form
A%q), the PBR cross section on bound electrons in plasma can
be found to have the form

4dre
A0l houmalls @) = = lefle, 1) *3(w + avo — kvo)

[n(we(w)ve — q)]? wddwddq
(w?e(w) — ai)? (2m)°

From here for the spectral cross section at frequencies w < Vo/R; we
obtain

(6.22)

1

16€3 dw
wRi(VE — e(w))!/?

1
doP? (w) = 3V2 "

i,bound

—|w?ai(w)[* In

] . (6.23)

In deriving Eqn. (6.23) scattering tensor was expressed through po-
larizability of the ionic core using Eqn. (3.20).

Compare cross section (6.23) with the transition BR on ions at
rest in plasma at frequencies w < {Vo/rp,w! ;. }. The latter can be
obtained from formula (6.15) after integrating over angular variables
and the transmitted momentum module:

2172 4
do? () = 0% dw [ Vo ] . (6.24)
D

3m2V@ w f? + 202,

At frequencies considered, the ion’s polarizability can be approxi-
mated by its low frequency limiting value: «j(w — 0) — R} ~
(me?)™3Z~'. Then, neglecting the difference of logarithmic factors
in cross sections, we obtain the desired ratio:

pol
C(w) _ dal ,bound w?

1P e (257 (6:25)

w < Vo/rp,w

(i)
mm



Plasma models of atom 115

It follows from here that PBR on bound electrons is small with respect
to emission on free electrons for ({(w) < 1) frequencies
w L VZZymet = wr(ril)in. (6.26)
So, if the inequality holds
Vo < rpwl) (6.27)
PBR on bound and plasma electrons are essential within different
(non-overlapping) frequency intervals and interference between them
can be ignored.

Let us assess now at which plasma number densities (n*) this
interference becomes significant. For this we bear in mind that PBR
on the ion’s core is important at w > wr(rll)in ~ me*/Z7Z;. Radi-
ation on plasma electrons has an upper frequency of the order of
Voy/ 4mne? /T, . As a result, at electron temperatures of the order of
the ionization potential of the ion, the number density sought for is:

n* ~ 101223 cm™3 (6.28)

Then the criterion of the “low-density” of plasma, when inter-
ference between PBR on plasma and bound electrons can be disre-
garded, is given by the inequality n < n*, where the number density
n* is determined by Eqn. (6.28).

Below we present the expression for the PBR spectral cross
section on the ionic core in plasma within the frequency interval
Vo/Ri > w > I (I is the maximum ionization potential of the
ion), when one can make use of the high frequency limit for dynamic
polarizability of bound electrons:

pol 16e2et(Z — Z;)? dw y
e T P e
‘ T (6.29)
4mn; Z e?
Wp = Te .

It is interesting to compare Eqn. (6.29) with formula for PBR
on the Debye “coating” of plasma ion (6.24). These expressions co-
incide if make substitutions: Z — Z; = Ny, Ri — rp, Wpe — wp.
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It is clear from here that PBR on bound electrons at w > I is fully
analogical to PBR on the Debye “coating” of plasma ions; only in
this case the electronic “cloud” around ionic core plays the role of
the polarization “coating”. Such a correspondence is explained by
bound electrons interacting with an electromagnetic field at w > I
as free particles, since their eigenfrequencies are much smaller than
the field frequency. The coupling with the core then appears only in
the spatial localization of bound electrons. If w <« I, the behavior
of bound electrons is determined by quantum mechanical laws, in
particular their resonance excitation becomes possible, etc.

From the viewpoint of the correspondence of terminology ac-
cepted in the theory of PBR on atom to the case of transition BR, we
can note that that the latter process on a plasma ion is “elastic” PBR
on the Debye sphere, while the Compton BR on plasma electrons (see
[73, 75]) corresponds to “inelastic” PBR on the Debye sphere.

Equation (6.23) differs from its analog in the case of PBR
on single atom (ion) only by under-logarithmic expression. This, in
particular, ensures that PBR on an ionic core in a low-density plasma
not be suppressed by the density effect, as well as the transition BR
[73, 75]. Both these facts admit one and the same explanation: a
photon is emitted by non-relativistic particles— plasma and bound
electrons. So the increase in the electromagnetic wave phase velocity
in plasma (which entails the density effect for ordinary BR) does not
affect the probability of the process. (The density effect for PBR
discovered in paper [79] relates to the case of dense plasma, when
the ion number density is of the order of the reverse ion’s volume;
this effect is due to the destructive interference of contributions from
different atoms of the medium).

The change in the under-logarithmic expression in Eqn. (6.23)
compared to PBR in vacuum is caused by the “dressing” of the IP
field in the medium. Here we should note that for plasma ions with
a core within the frequency interval wgl)in < w < I, dielectric perme-
ability of plasma can be larger than unity. Then the phase velocity of
a photon in the medium decreases and an effect inverse to the density
effect for ordinary BR should take place. For polarization BR this
“dressing” results in the IP field strengthening instead of decreasing.
If the denominator in the under-logarithmic expression of (6.23) van-
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ishes, the Vavilov — Cherenkov condition is fulfilled. PBR in such a
situation has been discussed by some authors [79, 80].

Thus PBR on the ionic core in a “low-density” plasma virtu-
ally coincides with the process in vacuum and its interference with
transition BR can be neglected.

The last statement remains valid for relativistic IP as well,
when at small emission photon angles a compensation of the excess
momentum transmitted to the target during BR due to the emis-
sion photon momentum becomes possible. In this case the frequency
ranges, where PBR on the Debye sphere and bound ion’s electrons
is important, can overlap in a low density plasma (at sufficiently
high TP energies), too, provided that wr(rll)in < 727“]51. However, in-
terference between these two channels remains negligible since it is
“smeared out” by the contribution of large enough transmitted mo-
menta: rp' < |q| < B!, when PBR on free electrons is small and
on bound electrons is large.

Figure 21(a) displays the PBR intensity spectral dependencies
for a zero photon emission angle on an ion structure in a plasma with
the Debye radius rp = 10° a.u. for two values of the IP energy.
It is evident that on the curve corresponding to the smaller energy
(v =1.05) a dip appears, because the frequency ranges where PBR
on free and bound electrons is significant do not overlap. In contrast,
at higher energy (7 = 5) the inequality wr(rll)in < 4%rp! holds, and
these ranges overlap so that no dips appear on the curve of the PBR
spectral intensity. In this case interference between PBR on the ionic
core and Debye sphere is negligible due to a large difference between
the Debye radius and the ionic core size.

In Figure 21(b) we show the (normalized) PBR spectrum in
a dense solar plasma with parameters rp = 1 a.u., Z; =15, T =
57 a.u. for a zero photon emission angle. The static polarizability
of bound electrons of plasma ions is assumed to be «oj(w =~ 0) =
102 a.u., and the relativistic IP factor is taken to be v = 10.

For these parameters the spectral ranges inside which PBR on
free and bound electrons is important overlap.

The solid curve in Fig. 21(b) includes the ionic core contribu-
tion to the process cross section; the dashed line corresponds to the
point-like ion approximation. Clearly, in the latter case destructive
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Fig. 21. Normalized spectral PBR intensities of a
fast particle in plasma on an ion with «(0) =1 a.u.
for zero emission angle (a) Z; =1, rp = 10° a.u.,
v =5 (the solid curve) and v = 1.05 (the dashed
curve). (b) The same for a dense (solar) plasma:
Zi =15, rp =1 a.u., T =1.55 keV, v=10.
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interference between two PBR, channels, corresponding to the gap on
the solid curve, leads to the 20% decrease in the total cross section.
The increase of the interference contribution is due to the difference
in size between the Debye “coating” and the ion’s core being approx-
imately one and a half order of magnitude smaller in this example
over the previous one (Fig. 21(a)).

Note that the solar plasma considered still stays ideal and non-
degenerate.

Thus we can conclude that interference between PBR on free
and bound electrons in the ideal non-degenerate plasma can be sig-
nificant only for large densities.

6.3. Interference—polarization effects during radiation
of relativistic particles in a dense medium

It is well known (see, for example, [81]) that during the or-
dinary (static) BR of relativistic particles in a medium interference
effects arise due to the quadratic increase of the radiation formation
length with IP energy L =~ y2X\ (7 is the relativistic Lorentz factor,
A is the wavelength). When the radiation formation length exceeds
the mean interparticle distance, processes of scattering of both the
electron itself (the Landau—Pomeranchuk effect) and the photon (the
density effect) on the medium particles begin to affect the probability
of the elementary emission act. In addition, within crystals collective
effects are possible due to the emitting particle entering the channel-
ing regime and transferring the momentum excess to the lattice as a
whole (coherent BR). There are also some interference effects caused
by the sample’s boundaries.

In the case of the polarization channel, emission of a photon
results from scattering of the IP proper field into a real photon on non-
relativistic bound electrons. So the medium has, as a rule, a smaller
effect on the polarization mechanism of relativistic particles. This
fact is clearly demonstrated in BR in plasma. Then the static chan-
nel turns out to be suppressed in the low frequency range w < ywpe
(wpe is the electron plasma density) because of the process’s for-
mation length decrease due to the increase of the phase velocity of
light in plasma— the Ter-Mikaelian effect [81]. At the same time,
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the increase of the phase velocity of electromagnetic radiation has
virtually no effect on the polarization BR cross section which in par-
tially ionized plasma can occur both on the Debye sphere (transition
BR) [73, 75] and on the bound electrons of ions [76]. The effect of
the medium here is reduced to screening the IP proper field, which
changes the under-logarithmic factor in the cross section. As a result,
logarithmic increase of the polarization BR cross section with the IP
energy, which would take place for the process on an isolated atom,
stops at frequencies w < ywpe . Therefore, the medium impact on the
polarization channel of BR of relativistic particles in plasma proves
to be much more weaker than for ordinary BR.

The situation, however, changes for polarization BR of rela-
tivistic particles in an amorphous condensed matter. Then, as was
first shown in [79], the polarization channel is strongly suppressed
by destructive interference of contributions from chaotically located
atoms into the cross section of the process. By its nature, this effect
is similar to the well known effect of X-ray scattering cross section
decrease in a condensed medium in the low frequency range [79].
Indeed, as we already discussed, the polarization BR can be inter-
preted, in the spirit of the equivalent Fermi photons, as being the IP
proper field scattering into a real photon on target’s electrons, so the
characteristic features of this scattering will be reflected in the PBR
differential cross section (the effect of the medium). After averag-
ing over contributions from different atoms, the following additional
factor appears in the cross section [79]:

. 4 3
M(qi)=1-o0 3];(35)7 o= 7W7;ORO,

v =|ai|Ro, (6.30)
where ji(x) is the spherical Bessel function, q; the momentum
transferred to the medium, ng is the medium’s atomic number den-
sity, and Ry is the average atomic size. Equation (6.30) indicates
that the destructive interference considered is essential only for a
sufficiently dense medium when the parameter o is of order unity.
Besides, the inequality z < 1 should be met, thus imposing a cer-
tain restriction on the bremsstrahlung photon frequency. An analysis
carried out in [79] showed that the maximum frequency wy, which
restricts from above the appearance of the density effect in PBR, also
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depends on the ratio of the screening radius (the Thomas— Fermi ra-
dius in the statistical model) to the atomic size: for a zero emission
angle, the maximum frequency wy increases with this ratio decreas-
ing, and in the opposite case wy — ¢/ Ry .

In a periodic medium, in addition to binary collisions the IP
momentum excess during photon emission can also be transmitted to
the lattice as a whole (coherent PBR). Here the role of this process
for the polarization channel proves to be even more significant than
for the ordinary (static) channel [82]. The point is that coherent
BR is produced for sufficiently small momenta transmitted, less than
the inverse thermal fluctuation of the atomic locations ur: |qi| <
up' [79]. Polarization mechanism is also significant for small g :
lai| < Ry L Since up < Ry, the necessary condition for polarization
BR is excessively fulfilled. One can say that at frequencies w < ¢/up
polarization BR occurs mainly with a transfer of momentum to the
lattice as a whole, and only for sufficiently high frequencies w > ¢/ur
non-coherent PBR dominates. The same effect takes place for PBR
in polycrystals as well [82].

7. Polarization —interference phenomena
in radiation of thermal electrons
in a low-temperature plasma

Now we turn to considering polarization and interference ef-
fects in bremsstrahlung emission (absorption) of photons in scattering
of slow electrons with velocities

on atoms (v, is the characteristic tic velocity of atomic electrons). In
this case the plane wave approximation is, strictly speaking, inade-
quate to describe the IP motion, so other methods of calculations are
required. The bremsstrahlung effect in scattering of slow electrons
on neutral atoms was first considered in papers [83] and [84]. In pa-
per [83], bremsstrahlung emission cross section and absorption for
electrons with energies Y < 3 eV were expressed through the elastic
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scattering cross section. Bremsstrahlung absorption of infrared radi-
ation in electron scattering on the hydrogen atom was calculated in
paper [84]; there the corresponding matrix element of the transition
was expressed through the phase shift of the s-wave of the IP wave
function.

The need for taking into account a neutral atom’s polarization
by scattering slow electron was noted in [83], where the ratio of the
static to polarization emitting dipole moments was estimated using
a classical model for electron motion in atom’s field. This estimate
suggested that the radiation occurs via polarization channel at least
at the IP distances from the nucleus of the order of the atomic size.
Nevertheless, in calculating the radiation intensity in gas and the
absorption coeflicient only the static channel was accounted for.

The polarization term in the bremsstrahlung emission ampli-
tude of a slow electron on atom was obtained within quantum me-
chanical approach in [63] using a diagram technique. For a slow
electron, condition (7.1) and energy conservation lead to the obvious
inequality for the emitted photon frequency w < w,, where w, has
the sense of the minimum eigenfrequency of atomic electrons. Con-
sidering this fact the following estimate was obtained for the PBR
cross section within the frames of the first Born approximation

ko—i—k)
ko —k)’

do(Pol) 8 w3
dw 9 E,

2
|Bi 111( (7.2)
where Fj is the initial energy of the scattering electron, (; is the
atom’s static polarizability tensor, kg, k the initial and final momen-
tum of the incident electron, respectively. The static PBR cross sec-
tion in this approximation can be presented in the form

do®) 25672 Ey
dw  2Twcd

[aolrlao)| " (7.3)

Here |ag) is the wave function of atom’s core. Note that the use
of the first Born approximation to assess the the BR cross section of
slow electrons on neural atoms proves to be more justified (see below)
for the polarization channel than for the static one.

PBR spectral cross section (7.2) was shown in [63] to attain a
maximum value at frequency wepy ~ 0.8 Ey with vanishing at small
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frequencies and at the boundary frequency w = Ey. Comparison of
contributions from both channels (7.2) and (7.3) at the frequency w =
wopt for By =~ (r?)/I, (I, is atom’s ionization potential) indicates
that the static radiation intensity is by two orders of magnitude larger
than the corresponding PBR intensity. Although basic formulas (7.2)
and (7.3) are approximate, using possible more accurate expressions
does not principally alter the results.

Thus we can conclude that core polarization effects in brems-
strahlung of slow electrons (in the sense of inequality (7.1)) on neu-
tral atoms are small compared to the classical estimation carried out
in [83]. The reason for this is in the emission frequencies of slow elec-
trons being small. At such frequencies, the atom’s core stays “not
defrozen” and the polarization radiation intensity is low, as follows
from Eqn. (7.2) where the PBR spectral cross section is proportional
to the cube of the frequency. Note that in approaching the brems-
strahlung photon energy to an atom’s ionization potential the dis-
persion of polarizability should be taken into account, so evaluation
using Eqn. (7.2) proves inapplicable in this frequency range.

Unlike emission, the above conclusion does not relate to the
bremsstrahlung absorption of photons by slow electrons, whence the
energy of the absorbed photon can be significantly larger than the
initial energy of the scattering electron. The corresponding numerical
calculations with a correct accounting for both radiative channels
were first carried out in [85].

The basic expression for the BR amplitude including polar-
ization effects, which was used in [85], has the form (see also [9,
Chap. 7]):

Feciw =(¢|(ed)|e + w)

e"+1;) ("| (eD(w)) |5)

oy ey

+2 Z (€ jlule + w, €") (
J<F

e’ >F

Here u stands for the operator of the IP interaction with the elec-
tronic core of the target and other notations are the same as in
Eqn. (2.32). The first term in Eqn. (7.4) represents the static chan-
nel amplitude for the inverse bremsstrahlung effect (bremsstrahlung
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absorption); the second term gives the polarization channel contribu-
tion to absorption. The effective dipole moment D(w) can be found,
as mentioned earlier in Sect. 2, in the random phase with exchange
approximation, which takes into account effects of inter-electron in-
teractions in target’s core during the radiative process.

If, as is the case of the situation considered, the energy of
the absorbed photon notably exceeds the initial electron energy (it
is in this case that the relative contribution of the polarization term
can be significant), then for a qualitative analysis the total process
amplitude (7.4) can be simplified to be

/ !
Fa,s-i-w = ML(ep) [g + ad(w)] ) (75)
w w
where « is the electron scattering length on atom. Note that in deriv-
ing Eqn. (7.5) we have also assumed that the electron momentum in
the final state is smaller than the typical momentum of atomic elec-
trons. The first term in Eqn. (7.5) describes the static channel and
depends upon the ability of atom to scatter charged particles. The
second term is proportional to dynamic polarizability of the atom and
accounts for the polarization channel. It is essential that both terms
similarly depend on the transmitted momentum, unlike the case of
fast particles (see Sect. 6), where the static amplitude increases with
the momentum transmitted and the polarization amplitude decreases.
The reason for such a behavior is that a slow IP has insufficient en-
ergy to effectively penetrate into the electronic core of an atom, so
the polarization term is determined by dipole polarizability while the
static term is established by the scattering phase of the s-component
of the electron’s wave function.

This peculiarity of the amplitude dependence of the channels
on the momentum transmitted makes it possible for the cross-channel
interference to appear not only in the differential over the electron
scattering angle cross section (as is the case for BR of fast IP), but
also in the integral over the angle bremsstrahlung effect cross sec-
tion which depends only on the frequency. For example, for nega-
tive values of the scattering length corresponding to effective attrac-
tion of electron to atom, the total bremsstrahlung absorption am-
plitude (7.5) can vanish for frequencies w < I, at which dynamic
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polarizability is positive. The estimation of this dip frequency can be
obtained from Eqn. (7.5) to be

Wmin = |a|/aq(0) . (7.6)

For example, for argon wpin = 0.26 Ry, for xenon wpin = 0.4 Ry.
As in both cases the interference dip frequency proves to be less than
the first exciting potential of the atom — target, estimate (7.6) can be
considered to be sufficiently correct.

For positive values of the scattering length that correspond to
effective repulsion of IP from target, total bremsstrahlung absorp-
tion amplitude (7.5) at frequencies below minimum eigenfrequency
of target’s core does not vanish since both terms have the same sign.

At frequencies above an atom’s ionization potential, the dy-
namic polarizability, and the total bremsstrahlung effect amplitude
as well, become complex quantities. No interference-induced van-
ishing of the corresponding cross sections occurs and only a shallow
minimum may appear in the spectral dependence of the bremsstrah-
lung absorption coefficient.

As seen from Eqn. (7.5), relative contribution of the polariza-
tion channel to the total bremsstrahlung absorption of a photon by
a slow electron on neutral atom ( R-factor) reads

Rlslow) _ (M)Q i (7.7)

a

Equation (7.7) entails that the relative contribution of the polariza-
tion channel in the bremsstrahlung absorption cross section in slow
electron scattering increases quadratically with the photon frequency.
Thus it is natural that at low frequencies corresponding to the low
electron BR this contribution is small, which is consistent, clearly,
with estimates from paper [63].

Substituting in Eqn. (7.7) the static atom’s polarizability

P
assuming the scattering length in the form |a| ~ (r) ~ IJ', the
polarization-to-static cross section ratio takes the form

ag(0) = Next / I? (Neyt is the number of external electrons) and

RO x5 (Noys w/1,)? . (7.8)
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Obviously, the polarization channel contribution at frequencies
w = I, (where an order of magnitude estimation is valid) is large and
for Next > 1 can become dominating. It should be born in mind that
at frequencies w ~ I, the condition that the final electron momentum
module is small compared to the characteristic atomic momentum is
violated. This has been used to obtain the basic formula (7.5) from
original expression (7.4). So for a correct understanding of the role
of the polarization channel in this case one should carry out an ac-
curate numerical calculation of the photon absorption cross section
using general formula (7.4). Such a calculation was carried out in pa-
per [85] for slow electron scattering on the argon and xenon atoms in
external radiation field. The process cross section integrated over di-
rections of the final momentum of accelerated electron was presented
as a function of the external field frequency in the spectral range 0.5 -
1.5 Ry for two initial electron energies ¢ = 0.01, 0.09 Ry with (and
without) allowance for polarization channel. Polarization effects in
the bremsstrahlung absorption spectral cross section were found to be
large not only in the near-resonance range but practically within the
entire frequency range considered, with total-to-static channel ratio
for the argon atom being around 3. The cross section for a higher-
energy electron (¢ = 0.09 Ry) proved to be about 10% larger over a
lower-energy electron (¢ = 0.01 Ry).

Note that in these calculations of the bremsstrahlung absorp-
tion cross section only partial s- and p-waves (I = 0, 1) were included,
which was enough in view of small IP energies. For frequencies of the
order of atom’s ionization potential w ~ I, the amplitudes of the
channels were found to have opposite signs, in agreement with esti-
mate (7.5).

An analytical description of the inverse bremsstrahlung effect
for slow electrons on neutral atoms with an account for polariza-
tion channel was first obtained in paper [59]. In particular, it was
shown that the plane wave approximation for the IP wave function
is appropriate to calculate the polarization channel contribution to
the process cross section even in the case of slow electrons. In these
calculations the initial p and final p’ momenta of the accelerated
electron were assumed to be small compared to the atomic momen-
tum p,. The total bremsstrahlung absorption amplitude (in atomic
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units) is obtained to be

App (w) = 47% (MEg) §(e +w — €'), (7.9)
where
M= - (R' sin(0) — 2 sin(a’)) + 980, (7.10)
202 \ p P! 0 PE

Here q = p — p’ is the change in the scattering electron momentum,
B(w) is the atom’s dipole polarizability, and dy is the momentum-
depending scattering phase of the s-component of the electron wave
function. Other partial waves were ignored due to the scattering
electron energy smallness.

Note that if the scattering phases of the accelerated electron
is set to zero, the first term in Eqn. (7.10), which describes the static
channel, vanishes. This corresponds, clearly, to a free charge in a
vacuum being incapable of absorbing a photon. At the same time,
the last term in Eqn. (7.10) stays non-zero for a free IP as well, as
was discussed above.

Formulas (7.9), (7.10) yield the simple expression for the ab-
sorption spectral cross section depending only on the initial electron
velocity [59]:

16 72 o | 1 (% v,
o,(v) = 3137 o {m (v—281n (5O)+Wsm (0g)

2w v+
+ ﬁ ) ln( 7 >+1—'inter 5 (7.11)

vVi—V

where the first term in the curly brackets corresponds to the static
channel, the second to the polarization channel, and the third repre-
sents the interference term (which has an awkward explicit form so
we omit it here). Setting f = 0 in Eqn. (7.11) yields the result [83]
that was found ignoring the polarization channel.

A numerical estimation of the radiation absorption spectral
coefficient by ionized gas, determined by the standard expression
kw = N¢Ny{(vo,(v)), can be obtained from Eqn. (7.11) after av-
eraging over the Maxwell electron velocity distribution. The scatter-
ing phase of the s-wave, entering Eqn. (7.11), was computed using
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the O’Melly — Sprach — Rosenberg formula [86]. Radiation absorp-
tion in neon and argon was considered as a function of frequency for
different gas temperatures. Static atom polarizabilities were used
fBrne = 0.4 A3, o, = 1.64 A3. For comparison with relation-
ships obtained in paper [59], the curves for spectral absorption coef-
ficients were calculated and plotted ignoring atom —target’s polariza-
tion. The contribution of polarization effects in radiation absorption
was found to be small for neon, explained by its low polarizability. In
contrast, polarization and interference effects for the absorption co-
efficient in argon are large. In particular, these effects cause a broad
minimum to appear on the absorption spectral curve (instead of a
monotonic decrease typical for the low-polarizability atoms). The
depth of this interference dip increases with decreasing gas tempera-
ture and somewhat shifts toward high frequencies. For a temperature
of T'=300° K, the interference minimum in argon locates at about
Wmin = 5 - 10" Hz, i.e. in the optical range.

The dip in the spectral absorption coefficient in argon, caused
by the destructive cross-channel interference in the bremsstrahlung
absorption by slow electrons discussed above (see Eqn. (7.5)), is also
due to the negative sign of the electron scattering length on the argon
atom (ax, = —0.875 A). Note that the scattering length of slow elec-
tron on the neon atom is positive (axe = 0.106 A). The interference
dip frequency can be found in correspondence with the quantity de-
termined by formula (7.6) and it significantly exceeds Ramsauer’s dip
width in the elastic electron scattering on atoms. So the minimum
calculated on the photoabsorption curve does not directly relate to
the Ramsauer effect and is a consequence of the destructive interfer-
ence of static and polarization channels.

Polarization mechanism in radiative processes in scattering of
slow electrons on ions with an electronic core has been first con-
sidered in monograph [9]. The slowness of electrons in this case,
determined by condition (7.1), coincides with the condition of quasi-
classical motion in the Coulomb field. The corresponding inequality
is opposite to the Born approximation. Radiative processes in scat-
tering quasi-classical electrons for sufficiently high frequencies of the
emitted (absorbed) photon (see below frequency condition (7.13))
are effectively described by methods of the so-called Kramers elec-
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trodynamics [47]. The physical picture underlying this method is
that during emission of high-frequency photons by a quasi-classical
electron in the atomic potential U(r), the radiation is formed in a
narrow region of the radial electron motion near the classical turn-off
point. The corresponding radiation radius (r,) is a solution to the

equation
2 2,.2

Uk _wor
5 10 =—5

and the emitting frequencies are close to the electron’s rotation fre-
quency on the trajectory near this point:

W wnor(na) = [(v2+200)1) /2] (7.13)

For the Coulomb field Eqn. (7.12) can be solved explicitly to give

ry =~ (Z /w2)1/ ?. At such small distances r,, the electron strongly
accelerates so that its trajectory and (due to localization of the radi-
ating part of the trajectory at the turn-off point) the emission spectra
do not depend on the initial electron velocity and are determined by
the angular momentum only. The independence on the initial en-
ergy allows the formula for the radiation intensity to be applied for
electron transitions both in the continuum and to the discrete spec-
trum, i.e. for recombination, as well as for transitions in the discrete
spectrum as well [47].

To calculate the PBR spectral cross section, one may ap-
ply Fermi’s method of equivalent photons [22], according to which
the corresponding intensity is represented as a product of the ra-
diation scattering cross section on the ion’s electronic core by the
flux density of equivalent photons linked to the scattering electron’s
field.

Formula for the equivalent photon flux density is determined
by the well-known Fourier components of the electron’s trajectory
in the Coulomb field and for strongly distorted trajectories this is
expressed in terms of the angular momentum of the slow electron
(M) in the form [9, Chapt. 11]:

137w M4 5 [wM? o [wM?3
Lo =~ 1 {K1/3 <37> tKoys |32 ) (0 (7.14)

where K3 and Ky/3 are the McDonald functions.

(7.12)
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Note that the possibility of describing by the classic formula
both the BR and photorecombination process comes from the true
condition of the spectrum quasi-classicality being local due to the spa-
tial localization of the radiating region and thus depending upon the
local kinetic energy eyin(r) of the accelerated electron at quantum’s
emission point:

w/exin(rw) < 1. (7.15)

The differential (over the impact parameter p or the angular

momentum M ) PBR intensity Q((L,pOI) is determined, as noted above,
by the product of the Fermi equivalent photon flux

QSJPOI) = I, Oscat (w) (716)

by the electromagnetic field scattering cross section on the core of
ion—target ogcat(w). From [87], we obtain

87wt

3ct

Thus Eqns (7.14), (7.16), and (7.17) in fact give the solution to
the problem of the slow electron PBR on ions in high frequency
range (7.13). Moreover, Eqns (7.16) and (7.17) also describe PBR
in the low frequency range (in the case opposite to (7.13)), provided
that the equivalent photon flux density is taken in the form corre-
sponding to a weak deviation of the initial straight electron’s trajec-
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I, = ﬁ {Kg <%) + K? (%)} (7.18)
which was used by Fermi [22] in calculating atomic excitation cross
sections by a charged particle with impact parameter p.

In order to obtain the total spectral cross section of the po-
larization BR, formula (7.16) should be integrated over the angular
momentum of the scattering electron or, equivalently, over the impact
parameter.

It is important to emphasize that the PBR cross section for
slow electrons on ions expressed through ion’s dipole polarizability
(7.16), (7.17) is justified when the radius responsible for the equiva-
lent photon emission with frequency w exceeds the ionic core size 7.

Oeat (W) = o |aw)]?. (7.17)
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For the Coulomb field the condition for the dipole PBR is given by the
inequality w < (Z/ r?)l/ %, The consistency of the latter with high-
frequency condition (7.13) in the Coulomb field yields the following
bound for the IP energy: ¢ < Z/ri, which is exactly the criterion
of an electron’s “slowness”. The conditions for the scattering elec-
tron dipole interaction with target’s core being met, the R-factor
characterizing the relative contribution of the polarization channel

reads )
2
R= l%(w)] , (7.19)

which is well known in the polarization bremsstrahlung radiation the-
ory [9].

8. Polarization radiation and absorption
in a laser field

8.1. Multiphoton polarization bremsstrahlung
emission and absorption

Multiphoton processes, as a rule, have an appreciable probabil-
ity in a sufficiently intensive external field. This problem became es-
pecially actual in connection with laser technique development which
can generate very powerful electromagnetic pulses with an electric
field strength of the same order as or even exceeding the atomic [88].

Multiphoton BR on a Coulomb center (without polarization
channel) for fast electrons was first calculated in [89]. In the Born
approximation for the incident electron, the following familiar expres-
sion for the process cross section was obtained:

dosBom(Q) = J2(aq) do(Q). (8.1)

Here J, is the Bessel function of the m-th order; a = Eg /w2 is
the amplitude of electron oscillations in the laser field with frequency
w and amplitude Egy, q is the change of the electron’s momentum
in the inelastic scattering into the solid angle Q, and do®°"(Q) is
the Coulomb scattering cross section. In the opposite case of quasi-
classical electron motion, in [90] an expression with similar structure
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was derived, in which q is substituted by the product wwv, , where
v, is the Fourier component of the classical IP trajectory in the
Coulomb center’s field.

Multiphoton bremsstrahlung effect of fast electrons on atoms
in a strong electromagnetic field with account of the polarization
channel was first considered in paper [91] within the frames of the first
Born approximation. The corresponding differential cross section for
the s-photon process has the form (in atomic units)

!/
4o (0, p) = 5 2| 1(0) 12 - Fla)]
q p
I 2
— S0t a@) [ (0) — T ()] 0. (82)

Here p = qE¢/w?, F(q) is the atomic form factor. The first term
inside the modulus describes the contribution from the static channel;
it coincides with Eqn. (8.1). The second term is the contribution due
to the target’s polarization, i.e. related to the polarization channel.

As was noted in [91], for |s| > 2 Eqn. (8.2) becomes, generally
speaking, inaccurate, since it does not take into account higher-order
(above the first one) interactions of atomic electrons with the external
electromagnetic field. So result (8.2) describes emission (absorption)
by the polarization channel of only one photon, other photons being
“supplied” through the static channel.

Higher orders of atomic interactions with external electromag-
netic field lead to the appearance of the cross section dependence
on the non-linear atomic polarizability. They have been taken into
account in [92], where the differential cross section of the induced
bremsstrahlung effect with account of the target’s polarization has
been obtained in the form

2
Y [Zbwo + Fa(@)] Jmlp)| . (83)

n+m=s

do®) 4y
de/ - pq4

Here Z is the nuclear charge; F,(q) = [ n,(r) ¢’9"dr is the form fac-
tor of the atomic electron density oscillation harmonics, which can
be expressed through the n-th order atom’s polarizability. Equa-
tion (8.3) describes emission of n-photons by the polarization chan-
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nel and m-photons by the static one, including all cross terms. How-
ever, due to a different character of the dependence on the momentum
transmitted (in this case, for BR on a neutral atom), the static and
polarization amplitudes weakly interfere, so after integrating over the
IP scattering angles, the cross section of the process is split into the
sum of two terms: one of them is static, another is “purely” polar-
izational. The static term is given by Eqn. (8.1) and the polarization
one is determined by the expression [92]

2 2
O'l(ps]% _ 47‘(‘Ps 2Sln Y 1D< Pa / > . P, = )A((S) E(S) ) (84)
p lp—p'|
Here the non-linear susceptibility tensor %(*) is introduced; ~ is the
angle between the initial momentum of the electron and the field
vector.

Equations (8.3) and (8.4) were used in [92] to calculate the
spectral cross section of two-photon bremsstrahlung effect for an elec-
tron with energy of 100 eV on the xenon atom near the resonance
transition 5p°1Sy — 6p (the resonance wavelength \g=126 nm). In
this case only one photon is emitted by the polarization channel,
because the even-order susceptibility for a free atom is zero. Com-
parison of the derived spectral dependence with the cross section
accounting for only the static channel suggests that polarization ef-
fects, primarily contributing near the resonance frequency, are quite
significant at large off-resonance (or order of 10%) frequencies, too.

Equation (8.3) correctly takes into account polarization effects
in multiphoton BR if interaction of the external electromagnetic field
with the atom —target is weak. Then the description of the process by
perturbation theory can be applied, leading to the possibility of the
cross section of the process to be expressed through the non-linear
susceptibility of atom. For strong interaction of atom with radia-
tion — for example, for near-resonance BR— the usage of Eqn. (8.3)
could be insufficient.

Multiphoton bremsstrahlung effect in a strong near-resonance
laser field with account of polarization effects of the target’s core out-
side the applicability frames of Eqn. (8.3) was studied in [93] using
the method of specified quantum/classical current [94]. A universal
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description for multiphoton induced bremsstrahlung was obtained in-
cluding both static and polarization channels. An essential limitation
of treatment [93] is the dipole approximation for interaction between
the IP and the target’s electronic core. Notice that the accuracy of
this approximation increases with the target’s ionization degree.

In order to describe polarization induced BR, in paper [93] the
methods of equivalent Fermi photons and Kramers electrodynamics
[46, 47] were generalized on multiphoton processes.

The probability of the s-photon process including both chan-
nels at a given electron scattering has the form [93]

Wy(s) = J2{p L - 3]} (5.5)
where, as before, p = qEq/w? and the function
(8.6)

is the ratio of the polarization and static channel amplitudes. In the
near-resonance case we have

[ w?) d?sgn(w — wp)
§ = <7> Q—RO (8.7)

Here Qr = /(dEy)? + (w — wp)? is the generalized Rabi frequency,
wp, d the proper frequency and the dipole moment of the near-reso-
nance transition, respectively, and Z; is the ion—target charge.

Figure 22 shows calculations [93] for differential cross sections
of bremsstrahlung absorption as a function of the strength of a lin-
early polarized laser field in the electron scattering on ion N4+ for the
single-photon (curve 1) and two-photon (curve 2) processes. In the
same Figure, the curves indicating contributions due to only static
channel for single-photon (curve 3) and two-photon (curve 4) pro-
cesses are also presented.

A generalization of calculations of the multi-photon BR with
account of the polarization channel on the case of relativistic laser
field intensities is given in paper [95].
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Fig. 22. The cross sections of the single-photon
and two-photon bremsstrahlung absorption in elec-
tron scattering on the N4t ion as a function of the
laser field strength calculated in [93] with account
for the polarization channel (curves I, 2) and in
the static approximation (curves 3, 4).

8.2. Polarization—interference effects in collisions
of an electron with atoms and ions
in a near-resonance laser field

Consider polarization effects that appear in the inelastic elec-
tron scattering on an atom or ion with the core in a near-resonance
electromagnetic field. The detuning of the external field frequency w
off the proper frequency of the target’s electronic core wy (A =
w — wp ) is assumed, on the one hand, to be sufficiently small so that
the contribution due to other transitions to the process can be dis-
regarded. On the other hand, the modulus of the detuning must
be sufficiently large (A| > y, where 7 is the near-resonance tran-
sition line width) in order that the actual excitation of the upper
electronic state and the related radiative decay can be neglected. In-
deed, the probability of the process with a real excitation of a discrete
level is proportional to the imaginary part of target’s polarizability.
Thus the second term of Eqn. (6.3) implies that in the case of the
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near-resonance external field frequency the cross section with real
excitation reads o™ o ~3 /(A% +~4%)2, while the cross section of
interest is 0B oc y A% /(A% +42)%. As a result, the relative contri-
bution of the cross section with the real level excitation is (y/A)?,
i.e. is negligible for large detunings. Note that this conclusion agrees
with an analysis of atom excitation in the line wing by light pulses
of short duration [96]. As was shown in paper [96], the “incoherent”
part of the excited state population that remains after the exter-
nal field turning off, is inversely proportional to the fourth power of
the frequency detuning, while the “coherent” component that traces
the instantaneous value of the radiative intensity, is inversely propor-
tional to the second power of A.

As the contributions due to static and polarization channel are
summed up in the BR amplitude, a cross-channel interference should
be manifest in the total BR. However, in the cross section of PBR of
fast electrons on neutral atoms, integrated over the incident particle
scattering angle, the role of this interference is small. Indeed, in that
case a spatial separation of the formation regions of static and polar-
ization channels takes place. The static channel forms at small dis-
tances between the incident particle and the target’s nucleus r < Ry,
where the atomic electric field is strong and acceleration of an electron
is large. The polarization channel, in contrast, is essential at large
distances r > Ry, since at small r the polarization potential is low.

The cross-channel interference was ignored in considering laser
radiation absorption in the optical gas break-down with account for
the polarization mechanism and multiphoton effects [97, 98]. Here
using the density matrix formalism, a quantum kinetic equation was
derived for the electron energy gain in its scattering on atoms in
resonance with the external field. Different regimes of the laser field
inclusion were analyzed. The ratio of the polarization and static
channels in terms of the inelastic electron scattering cross section on
an atom (oj, ) and transport cross section ( oy, ) was found to be:

1oy (w2 w
§=§0—tr<z> Efl?a (8.8)

Here fi5 is the oscillator strength for the resonant transition; (e) is
the mean electron energy; A = w—wjy is the frequency detuning. For
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parameters used in [98], ratio (8.8) is ¢ & 10% — 107. The estimation
obtained in [98] for the threshold break-down intensity of cesium
vapors for a relatively large detuning (A = 0.328 eV), corresponding
to the ruby laser energy and the minimal proper frequency of the
transition in the cesium atom, gives If)};eor =0.94-10° W/cm?, which
is in good agreement with experimental data Ip," = 10° W/cm? [99].
Note that here the probability ratio of the polarization and static
channels is equal to ¢ ~ 85, so that the main contribution to the
process is exactly due to the polarization mechanism for the optical
break-down.

The interference between the polarization and static mecha-
nisms for the bremsstrahlung absorption disappears when averaging
over the electron scattering angles [97, 98]. Nevertheless, even in the
case of PBR of electrons on neutral targets, cross-channel interference
effects can be manifest in the differential on the IP scattering angle
cross section of the process.

The cross-channel interference in PBR was first calculated in
paper [100] for the inverse bremsstrahlung effect as a function of the
electron scattering angle on the hydrogen atom within the frames of
the first Born approximation. The electromagnetic field frequency
was w = 0.3 a.u., the initial electron momentum was p; a.u.; in ad-
dition, the initial velocity vector was assumed to be perpendicular to
the electric field strength vector. The process cross section was found
to vanish for an electron scattering angle of 0.33 rad. This effect is
due to a destructive interference between the static and polarization
channels, whose amplitudes at given frequency and electron scatter-
ing angle have the opposite signs and close values. By increasing the
electron scattering angle the static channel becomes dominant, while
at small angles the polarization channel prevails. With the external
field frequency approaching one of the target’s eigenfrequencies, the
scattering angle at which the process cross section vanishes increases
because the polarization term amplitude increases.

In paper [101], two-photon free-free transitions in a laser field
during the electron scattering on the hydrogen atom were considered
with an account for the target’s polarization within the frames of
the first Born approximation. Spectral-angular relationships of the
process were obtained for different external field vector polarizations
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with respect to the initial IP momentum and various collision ener-
gies. The calculation revealed an interference dip in the dependence
of the cross section on the IP energy, due to destructive interference
between the static and polarization channels. Similar interference
dips were discovered in angular dependences for the two-photon ab-
sorption at a fixed IP energy. In [10] was also noted that inside the
interference dips the cross section vanishes for low energies of the ex-
ternal field photons (w < 6.8 eV) when the channel amplitudes are
real values. If the photon frequency is such that an imaginary part
in the target’s polarizability appears, the zero dip transforms into a
shallow minimum.

The role of the cross-channel interference effects in the inte-
gral over the IP scattering angles cross section for the bremsstrahlung
emission/absorption must increase with the degree of inelasticity of
the process, i.e. when the energy of the emitted/absorbed photon
becomes of the order of (or exceeds, in the case of the bremsstrah-
lung absorption) the initial IP energy. In this case, as follows from
energy —momentum conservation, the spatial formation regions of the
static and polarization channels start stronger overlapping. However,
for interference effects to show up the channel amplitudes must be
comparable, too. This occurs, for example, for BR of slow electrons
on ions with a core under the conditions for the Kramers electro-
dynamics to be applicable [47], when the radiative process is spa-
tially localized. If the effective radiation radius here exceeds the
size of the target’s electronic core, when the dipole approximation
for the IP interaction with the electronic core is valid, the cross-
channel interference can be also manifest in the integral over the
electron scattering angle cross section for the bremsstrahlung emis-
sion/absorption.

Interference signatures in the bremsstrahlung spectral cross
section are most prominent in the near-resonance region, which is
evident from Eqn. (8.5) for the considered process probability at
given electron scattering. For example, if the abosolute values of
the channel amplitudes match in the low frequency wing (0 = 1),
when the target’s polarizability is positive, the probability of the to-
tal bremsstrahlung emission/absorption vanishes by the destructive
cross-channel interference. Remarkably, as the external field crosses
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the resonance, the cross-channel interference changes the character,
which is accounted for by the factor sgn(w — wg) in Eqn. (8.7). For
w > wyp the cross-channel interference becomes constructive and the
total probability of the process exceeds its static value. Moreover,
interference effects in the near-resonance case significantly depend on
the electric field strength, as indicated by Eqn. (8.7) and the general-
ized Rabi frequency definition. By increasing the laser field strength
Ey the polarization amplitude decreases and correspondingly the in-
terference dip frequency in the spectral cross section of the process
approaches the transition eigenfrequency. This phenomenon is sim-
ilar to the saturation effect in radiation absorption by a two-level
system.

It is essential that in the dipole approximation on the IP in-
teraction with target’s electronic core we used in deriving Eqn. (8.5),
the corresponding probability is independent of the electron scatter-
ing angle. So the interference feature described above remains in the
integral over the IP scattering angle cross section of the process, un-
like the case of fast particles. In fact, Eqn. (8.7) does not take into
account contributions due to small distances to the bremsstrahlung
emission/absorption probability, when IP penetrates into the elec-
tronic core of the target and its interaction with target’s electrons
becomes significantly non-dipole.

The role of penetration effects in the near-resonance BR was
analyzed in paper [102] for electron scattering on multicharged ions
with a core. Specific calculations were carried out for resonant tran-
sitions in lithium-like ions without (An = 0) and with (An # 0)
the principle quantum number change. The IP penetration into the
electronic core of the target was found to differently affect different
Cartesian components (in the local frame) of the radiating dipole
moment vector induced in the ionic core. For example, in the case
An = 0, this influence proves strong for the z-component of the
dipole moment and is much weaker for the y-component. This leads
to a significant dependence of polarization— interference features of
the bremsstrahlung effect on the angle o made by the initial IP veloc-
ity vo with the electron field strength vector in the electromagnetic
radiation. This dependence is determined by the difference of the
D, and D, projections of the emitting dipole moment on the axes
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of the focal frame. In the Kramers high frequency limit (w > v3/Z;),
the main contribution to the BR cross section is due to trajectories
with high orbital eccentricities (¢ < 1) [9], then D, = cos?a and
D, ~ sin?c. Thus for the parallel orientation of the field vector
relative to the initial velocity vector (« = 0), the main contribution
to the cross section is due to the z-component of the dipole mo-
ment, and due to the y-component in the case of the perpendicular
orientation (« = m/2). But since the z-component of the dipole mo-
ment induced in the core strongly alters by the IP penetration in the
core, and the y-component (at least for transitions with An = 0)
changes much smaller, then for o« = 0, the IP penetration strongly
suppresses the cross-channel interference in the integral cross section;
if @ = /2, this suppression is not that strong. This is illustrated
by Fig. 23, which shows the ratio of the total cross section of the
near-resonance BR in the electron scattering on the N4+ ion to the
static channel cross section for two values of the angle « as a func-
tion of frequency detuning off the resonance. It is evident that for
the parallel orientation, the interference dip in the spectral cross sec-
tion disappears, while for the perpendicular orientation a relatively
broad minimum emerges in the low frequency line wing due to de-
structive interference between the static and polarization channels of
the process. In the high frequency wing, the relative difference of the
cross sections for two values of the angle « is small. In this case the
cross-channel interference has constructive character, so for the per-
pendicular orientation the cross section somewhat exceeds the value
for the parallel orientation.

Polarization — interference effects in PBR are much more pro-
minent in the differential over the IP scattering angle cross section
of the process. Spectral-angular dependences for the near-resonance
bremsstrahlung effect in a strongly inelastic electron scattering on
ions with a core were analyzed in [103] for quantum IP motion. These
dependences, averaged over the spin state, indicate that for the par-
allel orientation of the field (with respect to the initial IP velocity),
the interference dip in the spectral cross section shifts from the low
frequency wing to the high frequency one with an increase in the
electron scattering angle. In the case of the perpendicular orienta-
tion of the field vector, the interference dip frequency always locates
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Fig. 23. The spectral dependences of the in-
duced bremsstrahlung emission/absorption (nor-
malized to the static value) from quasi-classic elec-
tron scattering on the N4t ion for two angles «
(a=0, curve 1, a = 7 /2, curve 2) between the in-
cident particle initial velocity (v; = 0.6 a.u.) and
the external radiation electric field vector (Ey =

1073 a.u.), for the external field frequency at the
proper frequency of the near-resonant transition in
the ionic core without the principal quantum num-
ber change (2s — 2p) [102].

in the low frequency wing, by shifting toward the line center with an
increase in the IP scattering angle.

Within the frames of quantum treatment, the basic formula for
the cross section of inelastic electron scattering (from the state with
the initial momentum p; to the state with the final momentum ps)
inside the solid angle d€1; on an ion, assisted by an external field of
amplitude E(y and frequency w, can be presented in the form (using
throughout atomic units h=m=e=1):

1
1672

|(Mg) PP agy (8.9)

do(pr) = o
1
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where

M) = {prl = (Va(r) + Vo0, Bo)) Ip) o (8.10)

is the matrix element of the perturbation operator of the IP mo-
tion in the static field of the target and in the field of the target’s
induced dipole moment. Here |pijf) are the IP wave functions in
the central field of the ion normalized to the unitary flux at infinity,

pr = /p? £ 2w is the modulus of the IP final momentum, the positive
sign relating to the absorption and the negative sign to the emission
of the photon during scattering.

Expression (8.10) is obtained by neglecting exchange effects,
whose contribution to the cross section will be discussed below. The
function Vg (r) is the modulus of the ion —target’s static field strength
at the IP location site and Vj,01(r, w, Ep) is linked to the dynamic po-
larizability of ion’s electronic shell at the external field frequency w.
For the near-resonance case considered here (|w — wg| < wp ) has the
form

w?

3 VA2 + (doFo)2/3

VpOl(Ta W, EO) = Sgn Vns,n’p(r) (8'11)

where dy = (ns||d||n'p) is the reduced matrix element of the dipole
moment of the transition, Vj,s ,/,(r) is the reduced matrix element of
the IP interaction potential with the near-resonance transition ns —
n/p in the ion’s core which is

Vasnip(r) = <ns”9(7’ — rb)rb/r2 +0(ry — 7’)7“/7’,3” n'p) . (8.12)

Here r( is the radius—vector of ion’s bound electron and 6(z) is the
Heaviside function. Everywhere we consider the ground s-state of
the ionic core. In calculating functions Vi (r) and Vs pp(r) for the
outer electron of ion’s core, the wave function of the model potential
was used. For the internal 2s electrons Slater’s wave function were
employed.

In this treatment (unlike previous quantum calculations
[93, 97]), the interference of contributions due to static and polar-
ization channels in non-dipole IP interaction with the radiative tran-
sition inside the ion’s core has been consistently taken into account.
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The non-dipole character is important if the contribution from small
distances (of the order of ion size) exceeds or is comparable with that
from large distances, occurring in the case of a sufficiently strong
scattering inelasticity as considered below.

The TP wave functions can be computed using the approxima-
tion of a given quantum current of IP by expanding in spherical har-
monics corresponding to particular values of the orbital momentum 1.
The external electromagnetic field is assumed to be sufficiently weak
so that the wave functions of the scattered electron continuum can
be found by solving the corresponding Schrodinger equation in the
central field of the ion—target. The calculation was carried out for
lithium-like ions in the ground state and for the external radiation
frequencies near the frequency of the transition without changing the
principle quantum number.

The radial wave functions of the IP continuum were normalized
in agreement with the asymptotic

2 Z;
u(r — 00,1, p) — — sin (pr + — In(2pr) — gl—l- (5(1,;0)) . (8.13)
r p

Here §(1,p) = 6C(I,p) + Ad(I,p) is the total phase shift equal to the
sum of the Coulomb §€(I,p) and non-Coulomb A§(l,p) phase shifts,
with the latter being calculated using the formula [74]:
1 7(2
sin(80(p)) = oo [ (2 = W)l r) wlrn L p)u L) dr,
0
(8.14)
where u r,1,p) is the solution of the radial Schrédinger equation
with Coulomb potential.
As a result, the integral and differential cross sections of the
inelastic scattering are represented as the sum (over the orbital quan-

tum number) of terms containing radial matrix elements of the total
perturbation potential of the IP motion (Vi (r) + Vipoi(r, w, Ep)):

Coul(

Ryjq = (u(r, 1,p1) | Ve (r) + Vpor (1w, Eo)lu(r,l £ 1,p¢))  (8.15)

and the corresponding phase shifts of the IP wave functions.
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After integrating over the IP radius— vector directions,
Eqgns (8.9) and (8.10) yield

2

1 Eo\? |&
da(Qf)=W (w_g) lZs,ﬁ(Qf) sy . (8.16)
1 =0

For the parallel polarization (p; || Eg) terms S; read

fi,par . -Pl—l—l (COS 9)Rl7l+1ei(é(l’pi)+5(l+1’pf)) _
Sl (9) =aqay [ PI(COS 9) Rl—|—1 lei(é(l—i—l’pi)_'—é(l’pf)) (817)
where P;(cosf) are the Legendre polynomials, 6 is the IP scattering
angle, aj=1+1.
In a similar way, for the perpendicular polarization of the ex-
ternal field (p; L Ey)

siper — 10 by 1V )+ Vi ]
' | (8.18)
y {ezﬁ(l,Pi)Ru_H +ez5(l+2,pi)Rl+u},

where b = ‘/W, Ym(€) are spherical functions.

For the strongly inelastic scattering considered here the most
contribution to the cross section is due to small distances to ion’s core.
In calculating the radial matrix elements, the exchange processes in
the polarization channel were included for two possible total spins of
the “IP-+ion’s core” system.

The results of the spectral cross section calculations normal-
ized to the static cross section and average over possible values of
the total spin of the colliding particles are shown in Fig. 24(a,b) for
different IP inelastic scattering angles and two external field polar-
izations. The incident electron energy is 1 Ry and the external field
strength is Fy = 107 a.u. with the frequency near the resonance
transition 2s — 2p (hw = 10 eV) in the N** ion core.

Figure 24(a) indicates that taking into account the non-dipole
character of the IP interaction with a radiative transition inside an
ion’s core in the case of the external field parallel polarization leads
to a significant dependence of the spectral cross section minimum,
caused by destructive interference between the polarization and the
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Fig. 24. Spectral cross sections for inelastic elec-
tron scattering (absorption) on the N4t ion, av-
eraged over the spin state of the system of col-
liding particles, for different IP scattering angles:
0 = 57° (curve 1), 120° (curve 2), 140° (curve 3),
and normalized to the corresponding static cross
sections. Quantum calculation: a— the paral-
lel polarization of the external field p;| Ey, b—
the perpendicular polarization of the external field
pi L Eog.
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static channel, on the electron scattering angle. For small IP scat-
tering angles (0 < 90°), the minimum corresponds to negative de-
tunings (w < wq), while for large angles (6 > 140°)— to positive
(w > wp). There is a small range of angles (6 =~ 120°) inside which
the minimum is absent. Correspondingly, an “inversion” of the spec-
tral cross section line form asymmetry occurs as the IP scattering
angle increases.

In the case of perpendicular polarization (p; L Eg ), the inter-
ference minimum for all IP scattering angles lies within the range of
negative detunings of the external field frequency off the resonance
inside the ion core (Fig. 24(b)), by shifting toward the line center
with an increase of the scattering angle and vanishing at 6 ~ 180°.

The above features of the differential over the IP scattering
angle cross section are due to the dependence of the radial matrix
element of the non-dipole polarization interaction on the quantum
number of the IP orbital momentum. This matrix element changes
the sign in passing from large to small momentum values. The role of
these small momenta is especially large for the parallel polarization
of the external field, since in this case the contribution due to the IP
orbit part near the classical turn-off point increases. In contrast, for
the perpendicular polarization, there is an increase in the role of large
IP-ion distances (and, respectively, large orbital momenta) where the
IP acceleration proves parallel to the external field strength vector.

The integral over IP scattering angle spectral cross section
for induced inelastic scattering (for the parallel orientation of the
external field strength vector) is obtained in the form

. 1 & (1+1)?
/d ol = <w2> Z 20 +3 par(pivpf)v (819)

J 23 et

in which the quantity T/*" is defined by the combination of radial
matrix elements:

20+ 3
TP (pi, pr) =RPjpy + = ST R}y

[+ 2
2l 1 RP1 Riyoyi cos (6(L,pi) — 0(L+2,p5))
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Averaging Eqn. (8.19) over the external field polarization (or,
which is equivalent, over the initial IP momentum), we get

Ey 1 >
do?ver = ( ) 2 2. (820

For an arbitrary orientation of vector Eq relative to vector p;,
we find

/dapf( —sm a{/d a"er} 3cos2a—1{/dagir}7

(8.21)
where « is the angle between vectors p; and Eg. It is important that
the quantum calculation allows to establish the difference between
the photon absorption and emission cross section in the IP scattering
in the external field, essential for estimating the energy exchange
between plasma and radiation. However, as the above calculations
imply, the relative value of the corresponding difference cross section
(absorption minus emission of a photon) is maximal for a directional
IP motion and strongly diminishes when averaging over the angle «
between the field vector and the IP initial velocity vector.

The integrals over the IP scattering angle spectral cross section
for emission and absorption of photons are shown in Fig. 25(a,b) for
various external field polarizations. The electron scattering with an
energy of 11 eV on the N4t ion is considered for a field in resonance
with the 25— 2p transition in the ion core, with Ey = 1073 a.u. The
results exhibit qualitative agreement with the previous quasi-classical
treatment, according to which interference effects in the integral cross
section for inelastic scattering are pronounced mostly for the perpen-
dicular polarization of the external field. At the same time, the spec-
tral dip in the quantum theory proves more smoothed and less deep
compared to classical calculations.

For large detunings off the resonance where static channel pre-
vails, the sign of the difference cross section is consistent with calcu-
lations made within the first Born approximation [104]: absorption
exceeds emission for the perpendicular polarization, and vice versa.
With decreasing the frequency detuning, the difference cross section
starts being mostly determined by the cross-channel interference. As
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Fig. 25. Spectral (integral over scattering an-
gles) absorption (curve 1) and emission (curve 2)
cross sections in electron scattering (p; = 0.9 a.u.)
on the lithium-like nitrogen in the external field
(Ey = 1073 a.u.), which is near-resonant to the
2s — 2p transition in the core. Quantum calcula-
tion: a— the parallel polarization of the external
field p; || Eg, b— the perpendicular polarization
of the external field p; L Eg.
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was already mentioned, this is mostly pronounced in the integral scat-
tering cross section for the perpendicular polarization of the external
field. For example, in the frequency range where destructive interfer-
ence dominates, absorption notably exceeds emission for the perpen-
dicular polarization, as is evidenced from Fig. 25(b), since the spectral
minimum of scattering with photon emission is shifted towards large
detunings compared to the case with absorption. However, the same
shift causes the emission cross section to start exceeding the absorp-
tion one with a decrease in the frequency detuning value at w < wy.
For w > wy (p; L Ep) the situation is opposite.

For the parallel polarization (p; || Eg), the difference cross
section value inside the spectral interval where interference effects
are significant is much less (Fig. 25(a)) and has the opposite sign:
absorption exceed emission for sufficiently small absolute values of
the negative detunings (w < wy ), and wvice versa for w > wp.

The calculation carried out within the frames of the model
considered here indicates that the averaged over the angle o and the
total spin difference cross section for inelastic scattering amounts to
an appreciable value near the resonance, where the process mainly oc-
curs via polarization channel. The sign of the difference cross section
strongly depends on the IP energy: immediately at the threshold (for
the IP scattering with emission of a photon), emission exceeds absorp-
tion, but already for small IP energy excesses over the threshold, the
situation becomes reversed. Thus the quantum treatment considered
above confirms conclusions of quasi-classical calculations about the
important role polarization effects play in the near-resonance brems-
strahlung in a strongly inelastic electron scattering. Moreover, the
quantum approach allows the differential over the IP scattering BR
cross section to be correctly calculated, the processes with photon
emission and absorption to be distinguished, and quasi-classical re-
sults to be completed with an account for spin effects.
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9. Polarization radiation, Compton
scattering and collisional ionization.
Cross section relationships, similarity laws,
new ionization cross section data

Now we consider how the atomic plasma model can be ap-
plied to describe collisional-radiative processes accompanied by tar-
get’s ionization. These include collisional ionization of atoms (CIA)
and PBR with target’s ionization or incoherent PBR. In these pro-
cesses, the [P momentum — energy excess is transmitted not to the
target as a whole, but to one electron being ionized. In classical
paper [22], in describing atom excitation and ionization by charged
particles E. Fermi used the analogy between the charged particle’s
field and radiation equivalent to it (the equivalent photon method).
Here in order to calculate the incoherent PBR and CIA cross sections,
we shall use an analogy with X-ray scattering. Moreover, the statis-
tical model of atom is applied to establish an approximate scaling for
the atomic Compton profile, allowing for a universal description (for
all nuclear charges) of the X-ray scattering cross section by atoms
and related processes of incoherent PBR and CIA.

9.1. Approximate scaling of the atomic
Compton profile

In the case of X-ray scattering by atomic electrons, their cou-
pling with the nucleus is known to significantly modify (see, for ex-
ample, [23]) the process cross section. As a result, the unique cor-
respondence between the scattering angle and the frequency shift of
scattered radiation smears out. Thus, each scattering angle corre-
sponds to some frequency distribution of scattered X-rays centered
on the frequency determined by the well-known Compton formula for
free electron. The width of this distribution measures the coupling of
the electron with the nucleus. The corresponding frequency-angular
dependence of the cross section can be most simply described within
the frames of the so-called momentum approximation when the in-
teraction time of radiation with matter is small and the scattering
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process occurs both on free and bound electron in a similar way. In
this case, the scattering (on a bound electron) is treated like on a free
electron but with account for the initial distribution over momentum.
Then the effect of the electron—nucleus coupling on scattering can
be described using the Compton scattering profile (CP), J(Q), con-
taining information on the momentum distribution of atomic elec-
trons. This quantity for the nl/-th atomic subshell is given by the
formula [105]

5@ =5 [ 1Ru) o (0.1
Q

Here R, (p) is the spatial Fourier-image of the normalized radial
wave function of the nl-state. The argument of the function J(Q)
represents the projection of the initial atomic electron momentum in
the direction determined by the X-ray wave vector change. As the
Compton scattering is an incoherent process, the atomic CP is equal
to the sum of CP of all electronic subshells.

The atomic CP in the non-relativistic momentum approxima-
tion considered here enters as a multiplier into the expression for the
Compton cross section and hence determines its frequency-angular
dependence. There are extensive numerical tables for CP of all shells
of all elements [105]. An analysis of these data indicates that a simi-
larity law can be established for the atomic CP using the dimension-
less transmitted momentum Q = @Qrrr and the reduced Compton

profile
J(Q) = ! J<i> (9.2)

Z rTF TTF

By constructing the reduced CP J for different multielectron
atoms as a function of the dimensionless momentum using data [105],
for not very large arguments (inside the range Q< 10) ), we discover
that the corresponding curves resemble each other closely and can be
uniquely approximated by the relationship

- 0.8

Jscal(Q) = W ) (9.3)
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Fig. 26. The dependence of the reduced Comp-
ton profile J(Q) on the reduced momentum @Q:
1 — universal scaling (9.3), 2 — calculations for

the argon atom, & — calculations for the krypton
atom [105].

This dependence is illustrated in Fig. 26 which displays the re-
duced CP for argon and krypton, calculated using Eqn. (9.2) and ta-
bles [105] together with similarity law (9.3). Clearly, scaling (9.3) rea-
sonably well describes the Hartree - Fock CP values [105] within the
given range of the transmitted momenta. Making use of Eqns (9.2)
and (9.3), a universal expression for the Compton scattering cross
section on atom can be derived within the frames of the so-called
momentum approximation [23] that describes the process for all nu-
clear charges in a universal way. In what follow we shall use approx-
imate scaling (9.3) to derive the similarity law for the cross section
of collisional ionization of atoms and the universal formula for the
incoherent PBR cross section.
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9.2. Collisional ionization of atoms. The cross section
calculation in the Born—Compton approximation

Tonization of atoms resulted from collisions with charged par-
ticles is the fundamental process that plays an important role in dif-
ferent fields of physics and many technical applications. There are
many ways to calculate this process cross section based on various
models, approximations and semi-empirical formulas (see for exam-
ple [106 —109]). The results of such approximate calculations (using
the minimum number of parameters) in some cases demonstrate good
agreement with experiments [110], in other cases significant discrep-
ancy is evident. Here we propose a simple and novel method to cal-
culate the collisional ionization cross section that generalizes known
methods on the situations with the largest disagreement with exper-
imental measurements. The method proposed is named the Born-—
Compton (BC) approach as it is based, in addition to using the Born
approximation, on describing the dynamics of target’s electrons us-
ing the X-ray scattering Compton profile (9.1) and its approximate
scaling (9.3).

Using a standard procedure within the frames of the first Born
approximation, it is not difficult to obtain the following expressions
for the differential cross section of ionization from the nl-th atomic
subshell (using we use atomic units throughout):

(9.4)

Here Z, is the IP charge, v its velocity ¢ = (¢ =E - E, q=
pr—pi) is the IP energy —momentum change, and S, is the dynamic
form factor (DFF) of the subshell that is the spatial Fourier-image of
the autocorrelation function of the density of atomic electrons.
Making use of the plane wave approximation for wave functions
of the target’s continuum spectrum, DFF can be casted in the form

N2
Suila) = Z—§a<q0+%—enl> Ru)P. (05)

Here &, is the binding energy of the subshell and R,;(p) is the
radial wave function of the subshell in the momentum representation
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determined by the expression

Rulp) =2 [ ) o) . (96
0

where j;(pr) is the spherical Bessel function of the first kind and
R, (r) is the normalized wave function.

Here we employ the momentum approximation, within which
bound electrons are considered as quasi-free with the corresponding
momentum — energy connection determined by the equality

p2/2 = en- (9.7)

Then from general formula (9.5) the following representation of DFF
through the electronic subshell CP J,,;(Q) can be obtained:

1 0 2/9
SN (g) = FE (Q = —%) 9.8)

and then using Eqns (9.4) - (9.8) the differential over the displaced
electron’s energy W cross section of the collisional ionization can be
found in the form

JEtva—a—T
dog(w, z) 3nz21 " p Iy w+1—12) dt
e (e s

N t 4
nl Vz—vz—w—1

(9.9)
Here the dimensionless variables = = E;/I,,;, w = W /I,,; have been
introduced, where I,,; is the ionization potential of the electronic
subshell.
Equation (9.9) yields the total ionization cross section from
atom’s electronic subshell

. W) S (010)

NOX A 17]
dy
nl N

VT
O'nl(x) = W - Jni (

I, y— t2) dt

In equation (9.10) the maximum dimensionless transmitted energy
ym 18 introduced. Below we discuss specific forms of this energy.
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Summing up Eqn. (9.10) over all electronic subshells, we ulti-
mately arrive at

0i(Ei) =Y Nujow (EifI) 0(Ei — Iy) . (9.11)

nl

Here N,; is the number of the equivalent electrons in the nl-th
subshell, 0(z) is the Heaviside step function.

The result (9.10) and (9.11) is appropriate to name the Born —
Compton (BC) approximation as it express the collisional ionization
cross section in terms of the Compton profile, i.e. in terms of the same
target’s characteristic that describes the coupling of atomic electrons
with the nucleus in the case of X-ray Compton scattering.

It is interesting to note that Eqn. (9.10) in the limit of free
electrons is transformed to the well-known Thompson formula for
collisional ionization of target. Indeed, in this case CP can be written
in the form

J(Q) =46(Q). (9.12)

Here 6(x) is Dirac’s delta-function. Substituting Eqn. (9.12) into
(9.10) and making elementary integration, we arrive at the Thompson
cross section:
T rx—1
O'Thom(fb) = I_2 ? . (913)
Using Eqns (9.10) and (9.11) and data from Tables [105], we
can calculate the collisional ionization cross section; however, in the
subsequent calculations we shall use scaling (9.3). The expression for
CP that follows from Eqn. (9.3) can be recast through the electronic
subshell ionization potential in the form

O 25 1
THQ) = V21 1+ (Q%/0.81)° (9.14)

Substituting Eqn. (9.14) into (9.10), we obtain the standard colli-
sional ionization cross section expressed via the similarity function in
the form:

2
T 25y
2
Inl

O (= E/In) = f(z) (9.15)
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where

VAT
251" e dt

fla) =P ey === [ dy ; = .
1/ Sl 2 [t2 + (y — t2)2/0.64]
(9.16)

The maximum dimensionless transmitted energy can be understood
in two ways: (a) ym = z; (b) ym = (z+1)/2. Case (a) relates
to collision of identical particles; case (b), according to paper [111],
corresponds to ignoring the exchange within the 1st Born approx-
imation, when the total spin of the collision particle system is not
specified. Thus, depending on the choice of the upper limit in the
external integral of equality (9.16), there appear two modifications of
the Born— Compton approximation (a) and (b). For comparison, we
show here other forms of the similarity function, such as Gryzinski’s
formula [106]:

pema =L () 2 (1 LY (e v

z \r+1 3
(9.17)
and Eletskij - Smirnov’s formula [108]:
10(z — 1)
ES)(p) = 2~ 1
) mx(z+8) (9.18)

and also the and also the biparametric function of the BEB (binary-
encounter-Bethe) approximation [109]:

1 In(x) 1 1 In(x)
(BEB) _ _ 1 L
/ (z,u) 1+:1:+u[ 2 (1 x2>+1 z 14z

(9.19)

Here w is the dimensionless mean kinetic energy of electrons nor-

malized on the ionization potential of the given subshell. Note that
relationships (9.18) and (9.19) are virtually coincident for u = 0.6.

The double integral in the definition of Born - Compton simi-

larity function (9.16) can be approximated to a good accuracy by the
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following analytical formulas:

(BC()) .\ _ 0.51(z —1)
T (=) = 23/2 = 1234z + 1.273/z (9-20a)
\/_

B 0.514 (z — 1)
232 - 1.2242 4+ 1.663 \/x

which are convenient to use to evaluate the collisional ionization
cross section in the Born— Compton approximation. All similarity
functions quoted above are shown in Fig. 27. It is evident that the
maximum of the Born— Compton function is shifted toward low en-
ergies compared to relationships (9.17) - (9.19); the function value at
the maximum is larger, which is especially prominent for modifica-
tion (9.20b). Indeed, the value and location of maxima in the BC

() (9.20b)

approximation are, respectively: féﬁi(a” = 0.277, :rr(fa?{(a)) =3.3,
FBOM) _ 924, £ BSP) — 385 while for the semi-empirical Elet-

skij— Smirnov’s function: f&%i) =0.2, xﬁ?asQ =

0.1

| | | |
OO 2 4 6 8 10

Fig. 27. The similarity functions f(z) for the col-
lisional ionization cross sections calculated for dif-
ferent models as a function of the incident particle
reduced energy z (see the text).
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5 10 15 20 25 30
E, eV

Fig. 28. The electronic collision ionization cross
section for the sodium atom as a function of the in-
cident particle energy: I— experiment [113]; 2 —
calculation by the Born— Compton method; 3 —
calculation according to Eletsky — Smirnov’s for-
mula [108].

The results of calculations of the ionization cross section in
electronic collision with neutral atoms within the frames of the dis-
cussed approaches, as well as the corresponding experimental data,
are shown in Fig. 28— 31. Note that for the hydrogen atom, the
BEB approximation [109] (see Eqn. (9.19)) yields the best agreement
with experimental data [112]. The BC approach (in both modifica-
tions) overestimates appreciably the real cross section and shifts the
maximum toward low energies compared to the experimental curve.
This situation is typical for targets with a high ionization potential
(I, > 10 eV), as well as for light atoms and ions. Figure 28 shows
the collisional ionization cross section for an alkali atom (sodium)
(I, = 5.139 eV). Clearly, the BC (a) method better fits experimen-
tal data [113] than simple approaches known earlier.

The relevant information is also collected in Table 4. Here
E,, is the IP energy at the cross section maximum. It is clear from
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Fig. 29. The electronic collision ionization
cross section for the phosphorus atom as a func-
tion of the incident particle energy: I1— experi-
ment [110]; 2 — calculation by the Born - Compton
method (a); 8 — calculation by the Born— Comp-
ton method (b); 4 — calculation according to Elet-
sky — Smirnov’s formula [108]; 5 — calculation us-
ing Lotz’s formula [107]; 6 — calculation by the
BEB method (the simplest modification) [109].

Table 4.

Lil | Nal [ KI | RbI | Csl
En,eV,exp [113] [ 13 |14 [85 [105]9.5
En, eV, BC(a) 178 [ 17 | 14.32 | 138 | 12.84
Em, eV, ES 21.6 | 20.6 | 17.36 | 16.7 | 15.56
O imaxs AZ[113] [42 [68 [79 |- 10.2
O imax, A2[114] | — [86 [96 |96 |11
O imax, AZ [115] 49 |76 [82 |82 |94
0 imax, A2BC(a) [ 62 [6.8 [94 [103]11.9
0 imax, A2 ES 33949 [69 |[7.45]86

159
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Fig. 30. The electronic collision ionization
cross section for the tellurium atom as a func-
tion of the incident particle energy: I1— experi-
ment [110]; 2 — calculation by the Born — Compton
method (a); 8 — calculation by the Born— Comp-
ton method (b); 4 — calculation according to Elet-
sky — Smirnov’s formula [108]; 5 — calculation us-
ing Gryzinski’s formula [106].

this Table that the experimental values E,, for the alkali atoms are
better reproduced by the BC(a) method than by Eletskij—Smirnov’s
semi-empirical relation (9.18). This statement is also valid for the
maximum value of the ionization cross section ojnax with the excep-
tion of the lithium atom. As follows from the shape of the curves in
Fig. 27, the biparametric form (9.19) of the BEB approximation [109]
for the collisional ionization of the alkali metal atoms yields results
in worse agreement with experiment than the BC method.

The asymptotic behavior of the collisional ionization cross sec-
tion for the alkali atoms inside the energy range from 30 to 500 eV
was experimentally reported in paper [114]. This dependence proves
to be the same for all alkali atoms and is described by the following
formula [114]:

oi=aE". (9.21)
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Fig. 31. The electronic collision ionization cross
section for the iron atom as a function of the inci-
dent particle energy: 1— experiment [110]; 2 —
calculation by the Born- Compton method (a);
8 — calculation by the Born— Compton method
(b); 4 — calculation using Eletsky — Smirnov’s for-
mula [108]; 5 — calculation using Gryzinski’s for-
mula [106]; 6 — calculation by the BEB method
(the simplest modification) [109]. Calculations of
plots 2 -5 were carried out ignoring contributions
from d-electrons.

The best fit to the experimental data is provided by choosing 5 =
0.592. This value of the parameter is close to the BC model prediction
B = 0.5 (see (9.20)) and differs significantly from values given by
other approaches, as is clear from Eqns (9.17) - (9.19).

Calculated and experimental data [110] for collisional ioniza-
tion of atoms with filling electronic np-subshells (n = 3,5) in the IP
energy range from the ionization threshold to 200 eV are presented
in Fig. 29-30.

The above analysis suggests that the BC model is more con-
sistent with experiments than the known simple approximations for
atoms with moderate ionization potentials from groups III-VI (with



162 V. A. Astapenko et al

the exception of the aluminum and sulphur atoms) of the Periodic
Table. Note that light atoms of the II period provide exceptions
as well. The collisional ionization cross section for those atoms are
anomalously small from the viewpoint of the BC model predictions.

The phosphorus and tellurium atoms show particularly good
agreement. Calculations within the BEB approximation [109] us-
ing Eqn. (9.19) are given only for phosphorus atoms. For realistic
values of the reduced kinetic energy of an electronic subshell, the
BEB approach yields a cross section smaller than given by Eletskij—
Smirnov’s semi-empirical formula which, as the presented plots indi-
cate, underestimates somewhat the actual cross section in the con-
sidered cases. Note that a more accurate modification of the BEB
approximation would require more detailed information, namely, the
differential oscillator strength of electrons from the subshell being
ionized. Essentially it drops out from the class of simple methods for
collisional ionization cross section calculations.

Calculations show that for the incident electron energies be-
low the value corresponding to the cross section maximum, the best
results are obtained as a rule by the (a)-modification of the method
suggested (Eqn. (9.20a)), evidenced especially by the silica and anti-
mony atoms. For large incident particle energies the (b)-modification
of the BC approximation is preferred (Eqn. (9.20b)). Moreover, the
(a)-modification better fits experimental data for atoms from the first
half of the period, while the (b)-modification is more appropriate for
the 2d half.

Figure 31 demonstrates results for the ionization cross section
of the iron atoms by electronic impact. The calculations involving
single-parametric similarity functions (9.17), (9.18), and (9.20) have
been done ignoring the contribution from d-electrons to the total
cross section which has been assumed to be negligible. Note that the
BEB method accounts for the ionization cross section decrease for
electronic subshells with large values of the reduced kinetic energy
(it corresponding to a large orbital angular momentum). Neverthe-
less, appreciably overestimates the contribution from d-electrons to
the ionization cross section for the iron group atoms. Figure 31 im-
plies that the collisional ionization cross section for the iron atoms
measured in experiment lies between the corresponding curves for (a)
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and (b) modifications of the Born — Compton approximation. The cal-
culation shows that in the case of the nickel atom better results are
obtained by the (b)-modification of the BC method. It is interest-
ing to note that the best approximation to the experimental cross
section for the collisional ionization cross section of the copper atom
is obtained by choosing the effective number of 4s electrons to be
Ny = 1.5, which correlating with the peculiarity of filling electronic
subshells in passing from the nickel to copper atom.

To summarize, we note that in this Section, using model con-
siderations, a new simple method for calculation of collisional ion-
ization of neutral atoms is developed, the Born— Compton approxi-
mation, in which the dynamics of atomic electrons is described using
the Compton profile of X-ray scattering by target’s electrons. Us-
ing universal approximation of the Compton profile (9.3) allows the
collisional ionization cross section to be expressed through the cor-
responding similarity function, representing a double integral of an
elementary function and depending only on the incident particle en-
ergy ratio to the ionization potential of the ionized subshell. Two
modifications are suggested depending on the choice of the upper
limit of energy transmitted to the displaced electron, each of them
with its own preferable applicability region. Simple approximate ex-
pressions are found for the Born — Compton similarity functions that
allow rapid cross section calculations.

Comparison with existing experimental data and known sim-
ple calculation methods indicates that the approach proposed seems
to be preferential for neutral atoms “from the middle” of Mendeleev’s
Periodic Table with moderate ionization potentials, such as elements
from 3- 5th periods of groups III- VI. In addition the proposed
method satisfactorily describes the collisional ionization cross sec-
tion for the iron group atoms ignoring the d-electron contribution to
the process. An important advantage of this method is its simplicity:
the minimum number of atomic parameters is required to calculate
the cross section. At the same time the new method overestimates
the process cross section for atoms with high ionization potential
and light atoms from the second period of the Periodic Table, by
shifting the maximum toward low energies, so the employment of
traditional methods, such as the semi-empirical Eletskij— Smirnov’s
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formula [108] or Kim’s BEB approximation [109] appears to be pre-
ferrable.

Thus the Born— Compton approximation considered here can
be used as a simple method for calculating collisional ionization cross
sections of those atoms for which traditional methods known earlier
yield unsatisfactory results.

9.3. Polarization bremsstrahlung radiation
with ionization of atom: relation with X-ray
Compton scattering

Polarization bremsstrahlung radiation (PBR) of a charged par-
ticle on target with an electronic core is connected with conversion
of the incident particle proper field into a real photon on the bound
electrons of the core [9]. Depending on the momentum ¢ transmit-
ted to the target during the radiative process, PBR can be coherent
(¢ < pa, pa is the characteristic momentum of bound electrons) or
incoherent (¢ > p,) with respect to the contribution of individual
bound electrons to the total radiation. In the last case PBR is ac-
companied, as a rule, by ionization of the atom [116], so it has the
second name, “radiative ionization” [117]. Note that PBR can be
accompanied by the excitation of an atom, too [116].

Energy conservation implies that PBR is always incoherent
within the frequency range w > p,vg (vo is the incident particle
velocity).

Incoherent PBR, whose cross section is proportional to the
number of the atomic electrons [116], can be interpreted as was noted
above, as being the Compton scattering of the incident particle proper
filed on target’s electronic core, during which some fraction of the
energy transmitted ionizes the atom. Such an approach has been
tightly related to the equivalent photon method of E. Fermi [22],
who considered the interaction of a charged particle with an atom as
its irradiation by the electromagnetic pulse of the equivalent photons.
This approach allows using the known photo ionization cross sections
to calculate collisional ionization of atoms by fast electrons. In this
case the establishing of a relationship between PBR and the Comp-
ton scattering of photons is important for PBR studies, since there
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is extensive information on the Compton scattering for all elements
from the Periodic System, (see for example [105]).

Under experimental conditions the process of incoherent PBR
of a non-relativistic electron on an multi-electron atom is as a rule is
fully masked by the bremsstrahlung radiation of the secondary elec-
trons via the ordinary static channel. Incoherent PBR may appear
either for a relativistic particle (due to different angular distribution
of the bremsstrahlung photons in polarization and static channels),
or for a heavy incident particle, when the static channel is suppressed.
So incoherent PBR in the non-relativistic case appears to be physi-
cally interesting mainly for scattering of heavy particles.

Incoherent PBR is studied below for multi-electron atom —
targets that allow a universal description of the process cross sec-
tion, valid for all elements from the Periodic Table, obtainable us-
ing the analogy between PBR and X-ray Compton scattering on
atoms.

At high frequencies w > I, the PBR spectral cross section for
a non-relativistic Born charged particle, integrated over the photon
emission solid angle, reads in ordinary (Gaussian) units:

4
8 et el

do(w) = /dQ dqg S(¢°, q) (9.22)

3 miughed w
where eg = Z,; e is the IP charge.

Note that within the approximation of quasi-free (rest) atomic
electrons, the incoherent DFF of the target has the form:

o VA w+qvo + q*/(2
Speh(q) = E(s( d quoq / M)) (9.23)

Here p is the reduced mass of the electron and IP, Z is the number
of atomic electrons which is equal to the nuclear charge.

Considering the DFF relation with Compton profile J(Q)
(9.8) and the CP scaling (9.3), the following representation of the
spectral PBR cross section at frequencies w > p, vg is obtained from
Eqn. (9.22):

do(w, vg, m) = WZ; d&(wrdp, vorTER, M) . (9.24)
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Here we introduced the reduced cross section dé depending upon
the emitted photon frequency and the IP velocity, appropriately nor-
malized to the characteristic radius of the Thomas—Fermi atom and
denoted below by variables with the tilde. The reduced cross section
is expressed through the normalized Compton profile of the atom

de(w, v m)—Oos—Zd—wI((IJ 0, m), (9.25)
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Here v, = (@+¢*/2m)/G, b = 0.8853. The upper and low in-
tegration limits on the modulus of the transmitted momentum in
integral (9.26) are determined by the condition vy, < v: ¢min, max =
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o) — —

16 €2 <h
3 he

2
) =2.074-107% a.u. (9.27)
Me C

Thus Eqn. (9.25) and (9.26) reveal the similarity law for the
incoherent PBR cross section of a fast (but non-relativistic) charged
particle on multielectron atom and express the process cross section
through the normalized X-ray Compton scattering profile. This cross
section (within the factor v/Z) depends on the emitted photon fre-
quency and the IP velocity expressed in units of the Thomas— Fermi
momentum.

Note that although similarity law (9.25) —(9.27) has been ob-
tained, strictly speaking, within the statistical model frames, it is
approximately valid (to the “smearing out” of the shell structure) for
the Hartree— Fock atom as well due to the aforementioned approxi-
mate scaling for the normalized Compton profiles (see Fig. 26).

For comparison, we present the corresponding expression
for the incoherent PBR cross section on a hydrogen-like ion with
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charge Z:

dop(w, v, m) = Z ' b?ds %, L, m (9.28)
Py PH

where py = Z a.u.

Equation (9.25) for the high frequency PBR cross section with
ionization of atom specifies and completes the result [116] obtained
using DFF in the model of free atomic electrons (9.23). This can also
be represented in form (9.25) and (9.26) provided that

_ (IJ ,[)2
Ifree(cv,ﬁ,m:ln{l”l 26/ )}- (9.20)
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A characteristic feature of the process is the appearance of
the cut-off frequency caused by momentum conservation. From kine-
matical considerations the “cutoff” frequency for electron PBR is
two times smaller than for proton PBR (due to the difference in the
reduced masses). This justifies the above conclusion for the indepen-
dence of the PBR cross section of the incident particle mass.

Spectral dependences of the effective incoherent proton PBR
w % , calculated using different approximations, including the model
of free atomic electrons, are shown in Fig. 32. Clearly the main
difference between the models appears at frequencies w > w* =
v’ /2; i.e., above the “cutoff” frequency for PBR on free electrons.

The cross section decrease (with increasing PBR frequency in
the exponential screening model) occurs much faster than for the
Hartree— Fock Compton profile, also evident from Fig. 26. At fre-
quencies below the “cutoff” frequency, the Hartree — Fock method of
accounting for coupling of atomic electrons in the initial state yields a
somewhat smaller cross section compared to the model of free atomic
electrons.

Note a close similarity of dependences shown in Fig. 32 to the
corresponding spectral cross sections for radiative ionization from pa-
per [117]. In this paper a similar approach was applied to describe in-
coherent PBR (radiative ionization) based on using the non-diagonal
atomic form factor F, w(q), calculated earlier in connection with
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Fig. 32. The spectral cross section of non-coherent
PBR of a proton with energy 34 MeV on the
krypton atom near the ‘cut-off’ frequency calcu-
lated within the frames of different approxima-
tions for the atomic electron density: curve 1 —
the Hartree — Fock calculations. curve 2 — the ex-
ponential screening, curve 8 — the approximation
of free atomic electrons.

the atomic ionization problem [118] and the emission of characteris-
tic X-rays.

Figure 33 show the effective emission w fil—g of the incoherent
proton PBR on the krypton atom for three values of the bremsstrah-
lung photon energies 3.78, 7.57 and 11.35 keV. It is seen that these
functions have maxima that shift toward higher velocities with in-
creasing the bremsstrahlung photon energy. The corresponding for-
mula relating the bremsstrahlung photon frequency with the optimal
value of the proton velocity has the form (in atomic units):

Vopt, = 1.89 v/ . (9.30)

It is essential that relationship (9.30) is independent of the
nuclear charge, opposite to the similar dependence for coherent PBR,
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when the optimal velocity linearly depends on the emitting frequency
[119] through the atomic subshell radius that mostly contributes to
the process.

Note that the incoherent PBR cross section (9.24) is propor-
tional to the square of the incident particle charge. Its intensity can
be very significant for heavy multi-charged ions that are used in mod-
ern experiments on storage rings (see for example [66]).

Now we wish to also analyze the relation between the coher-
ent and non-coherent PBR cross sections. The cross section for the
coherent process will be calculated within the exponential screening
model for the electron density of target’s core. The corresponding ex-
pression can be derived from general formula (9.22), bearing in mind
that the atomic DFF in this case is reduced to the ordinary static
form factor, a Fourier-image of the electron density.

After standard transformations including integration over the
emitted photon solid angles and transmitted momenta, the coherent

50

hw, KeV

Fig. 33. The non-coherent proton PBR on the
krypton atom as a function of the proton veloc-
ity for three values of the bremsstrahlung photon
energy: hw=3.78 keV (curve 1), hw=7.57 keV
(curve 2), hw=11.35 keV (curve 3).
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PBR cross section of a non-relativistic Born particle is found to be

Gmax

16207, L did
3 923 i (1+q2/2)4q w

dmin

da(eXp) (w)

coh

(9.31)

In the integral from Eqn. (9.31) are the same limits for the transmit-
ted momentum as in Eqn. (9.26). The “tilde” above the transmitted
momentum sign and the IP velocity again indicates the normalization
to the momentum (velocity) of the Thomas — Fermi atom.

The integral in Eqn. (9.31) can be taken in quadratures, but
the resulting expression is sufficiently awkward. For a heavy IP, the
upper integration limit can be substituted by infinity. Then the in-
tegral over the transmitted momentum becomes

)

11+ 54 (%)24—72 (%)4 11 1 <1+2(
(9.32)
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Note that in the high frequency limit v/rrp < w formula (9.32) has
the asymptotic

(exp)
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The inequality v/rrp < w  can be recasted in the form: w >
0.125 Z%/3 KeV, implying that it is valid for all Z the keV energies
of the bremsstrahlung photon.

Collecting together all above formulas, we arrive at the coher-
ent PBR cross section in the exponential screening approximation of
the high frequency limit w > 0.125 Z%/3 KeV:

_ 320 L 743 ﬁd_w

dog” (@) 33 Wt w

coh

(9.34)

For correct assessment of the relation between the coherent and in-
coherent cross sections of the process it is important to stress that
simple approximation of the atomic density by one exponent with the
characteristic cut-off at the Thomas— Fermi radius underestimates
significantly the K -shell contribution to coherent PBR on multielec-
tron atom at high frequencies. Indeed, the closest orbit to the nucleus
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has a radius about Z2/3 times smaller than the Thomas - Fermi ra-
dius. Thus the corresponding integral in Eqn. (9.31) leads to another
form of drop-off in the spectral cross section high-frequency than for
the Thomas— Fermi radius.

Taking into account an additional contribution from the
K -shell, we rewrite formula (9.31) in the form (Z > 1):

da(exp)(w) — EZAL/?) 2d_w

coh

3 02¢3 7 w

Xp) [~ ~ 4 (exp) ~ -~
<AL @, 0+ 7 1D @5 (oic(2) fpre)) - (935)
Here we have introduced the K -shell momentum pg(Z).

Equation (9.35) is a universal representation (for all nuclear
charges) of the coherent PBR cross section of a fast particle obtained
within the framework of the exponential electron density model, with
a separate account of the K -shell contribution to radiation.

Coherent and incoherent PBR cross sections of proton on the
krypton atom for two proton velocities are shown in Fig. 34. This
figure implies, in particular, that the incoherent process can prevail
over the coherent one for sufficiently high incident particle velocities.
Indeed, in that case the “cut-off” frequency of the radiative ioniza-
tion shifts toward higher frequencies where the contribution of most
atomic electrons to coherent PBR becomes small.

In this Section we have found a universal description of inco-
herent PBR of fast charged particles on multielectron atoms. In PBR
calculations, a relationship between the process with the Compton
X-ray scattering profile has been established. This allows extensive
data for Compton scattering to be used in the PBR calculations.
The universal description is based on an approximate scaling of the
reduced X-ray scattering Compton profile on neutral atoms which is
valid for sufficiently large nuclear charges (Z > 20). Based on formu-
las obtained, we have analyzed spectral and velocity dependences of
heavy charged particle incoherent PBR on multielectron atom. For a
given PBR frequency, an optimal incident particle velocity has been
shown to exist at which the process cross section reaches maximum.
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Fig. 34. Spectral cross section of the non-coherent
(curves 1) and coherent (curves 2) proton PBR
on the krypton atom for different proton veloci-

ties: (a) Z=36, v= 10ryp =37.3 a.u., (b) Z=36,

v= 37"1?1% =11.2 a.u.
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The optimal velocity increases as the square root of the frequency.
The comparison of the coherent and incoherent cross sections has
discovered that at sufficiently high incident particle velocities there
exists a frequency range inside which PBR with an atom’s ionization
dominates over coherent PBR. Experimental aspects are discussed in
Sect. 10.

10. Experimental aspects

Polarization effects in atomic transitions are studied experi-
mentally to a lesser degree than theoretically. One of the first exper-
imental applications of the PBR theory was bringing into agreement
experimental data on the laser break-down of the alkali metal va-
pors [99]. This included predictions of the avalanche theory using
the inverse bremsstrahlung effect cross section calculated in [91] with
account for the polarization mechanism.

In this section, we consider experiments on polarization BR
and related phenomena for different media and energies of incident
particles.

10.1. Experiments on PBR of electrons on atoms

Polarization BR in scattering of the keV-electrons on isolated
atoms was first observed in paper [120], in which a supersonic Xe
stream was used as a dense atomic target. Measurements were car-
ried out in the spectral range corresponding to the “giant” resonance
in the photoabsorption cross section caused by the 4d-subshell (the
maximum frequency wPh = 98 eV, the line half-width T' ~ 24 eV).
The contribution due to polarization channel is most significant in
this region [121]. The emission spectrum form was found to be very
similar to that of the photoabsorption line. This is explained by the
relation of the imaginary part of the dynamic polarizability, which
determines the PBR cross section in this case, with the photoabsorp-
tion cross section, consistening with the optical theorem. However,
for xenon, as the estimations from paper [121] suggest, the ratio of the
PBR cross section to that of static BR is less than unity even at the
maximum (around 0.4). In order to distinguish the contribution due
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to the polarization channel a special procedure was employed in [120]
based on subtracting the argon emission spectrum from the observed
one and for which the PBR contribution in the spectral range under
consideration is negligible. Experimental conditions were chosen such
that for photons outside the “giant” resonance in the 4d-absorption,
the intensities of emission spectrum of argon and xenon coincided. It
is essential that the spectral range under study (70—150 eV) does not
contain the line spectrum from the considered species. The energy
of electron beam was 600 eV with the current density 0.3 A/cm?.
The electron energies were bounded from above since ionization of
the 3d-subshell of xenon is possible at high energies. Based on these
measurements the cross section ratio of PBR and static BR was shown
to be about 70%. Maximum of the emission observed was at a photon
energy of 113 eV, which significantly exceeds the ionization threshold
of the 4d-subshell of xenon and is shifted towards high energies in
comparison with the photoabsorption maximum at about 20 eV.

Emission spectra of oxides and fluorides of lanthanum and
thorium caused by the bombarding of solid targets by keV-energy
electrons were studied in papers [122, 123]. The ratio of BR chan-
nels at a frequency near the ionization potential of the 4d-subshell
of lanthanum is (according to the estimate made in [121]) around
3.2. Thus it is lanthanum that is of the uppermost interest from the
point of view of observations of polarization effects in BR. At frequen-
cies above the ionization threshold of the 4d-subshell of lanthanum
(110eV < w < 140V ) studied in [122, 123], where the “giant” reso-
nance occurs, photoabsorption by metallic lanthanum is very close to
the atomic one. This provided the grounds to consider the emission
spectrum to be of atomic character. The emission studied was ex-
cited by electrons with energies from 500 eV to 4 keV with a current
strength of 4 -6 mA. The energy resolution of the photodetector used
VEU-6 was 0.18 eV at a photon energy of about 100 eV. The samples
examined were taken in the form of thin films around 100 Angstroms
in thickness, which allowed avoidance of the radiation self-absorption
that mimicks the measured spectrum in a volume sample, especially
at high incident particle energies [123].

The measured emission line profile was found to be very close
to that of the photoabsorption line. The position of the emission
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maximum was shifted by about 0.5 eV toward low energies compared
to the absorption maximum, and the spectral width of the band in
emission was somewhat larger than in absorption. As noted in pa-
per [123], the central frequencies of the spectral emission maximum
for oxides and ftorides of lanthanium coincide. Moreover, it was dis-
covered that the corresponding line half-width in the LaFj sample
(4.1 €V) is smaller than in the LagO3 sample (5.7 €V). Thus, the reg-
istered spectra proved to be sensitive to some degree to the chemical
composition of the sample.

It is quite symptomatic that the emission line profile was asym-
metric with a slower decrease at the high frequency wing. This fact
can be explained by cross-channel interference, known [93] to have
a destructive character in the low-frequency wing and a constructive
character in the high-frequency wing.

As was noted in paper [121], the Born approximation is, strict-
ly speaking, insufficient to describe the emission spectrum obtained in
experiments [107] using the 0.5-keV electrons. However it was used to
describe qualitative relationships. The spectrum calculated in [121]
using a formula similar to Eqn. (5.3) turned out to be very close
to that measured in [123]; here at all frequencies the contribution
from the polarization channel was larger than that from the static
one.

Experimental studies of PBR of the keV-energy electrons on
the xenon atom near the ionization threshold of the 4d-subshell were
continued in papers [124, 125]. Paper [124], in addition to reporting
on experimental results, suggests a theoretical explanation for the dis-
covered emission spectrum maximum shift with the change in the IP
energy and the bremsstrahlung photon’s emission angle. Increasing
the electron energy from 0.3 keV to 0.9 keV resulted in the maxi-
mum spectrum energy shift from 123 eV to 105 eV with a photon
emission angle of 97°. Here the line profile asymmetry was found
to strengthen such that the intensity shortly damped toward high
frequencies. Moreover, for electron energies 0.3 keV and 0.6 keV, ad-
ditional maxima in the high-frequency emission line wing appeared.
The explanation to the observed shift of the maximum was based on
calculating the differential over the photon angle PBR cross section,
in which an additional term was accounted for in addition to the
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logarithmic one. A simple expression was obtained for the frequency
detuning of the emission spectrum maximum off the photoabsorption
maximum, predicting this parameter to decrease with the IP energy,
an event actually observed in experiments. The computed values of
the detuning in the high-energy IP limit were found, however, to ex-
ceed the experimental ones. This can apparently be explained by the
inadequacy at the Born approximation.

Measurements of the differential BR, spectral intensities in rel-
ative and absolute units for different energies of electrons scattering
on the xenon atoms were carried out in paper [125]. The dependence
of the PBR intensity on the IP energy turned out to have a maximum
lying inside the 0.6 —0.7 keV electron energy range, contradicting the
Born approximation predictions; in this case, however, its applica-
bility is not justified. A dependence different from Born’s was also
observed for the BR intensity as a function of the IP energy in the
static channel. By increasing the electron energy from 0.3 to 0.6 keV,
a linear growth of intensity was registered, notably slowing down in
the 0.6 —0.9 keV range. At the same time, as is well known [9, 126],
the Born approximation yields the inversely proportional dependence
of the BR spectral intensity on the IP energy for both channels. The
deviation from the Born relationship confirmed in [125] is mainly due
to effects of the IP penetration into the target’s electronic core (see
Sect. 5.3 above).

10.2. Relativistic experiments on accelerators

Experimental studies of polarization effects in relativistic elec-
tron radiation in condensed media [127 - 130] have been intensively
developed recently.

Paper [127] reported on observations of polarization-interfero-
metric features in the emission of relativistic electrons (with energies
of 15 MeV and 25 MeV) in a silicium crystal 50 mcm in thickness.
In that paper the interference of the coherent and parametric mech-
anisms for the X-ray emission was first discovered. The paramet-
ric X-ray radiation is synonymous with the coherent PBR that had
been used for describing relativistic electron emissions in periodic
media long before the general concept of PBR had appeared. In
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order to observe the effect, a crystallographic plane (220) was used
in this experiment which proved to be most convenient under the
given experimental conditions. In the course of coherent radiation
the momentum excess equal to the inverse crystal lattice vector cor-
responding to the plane (220) was transmitted to the medium. If
the transferred momentum is specified then there is a notably in-
crease in the cross-channel interference compared to the radiation in
an amorphous medium. In the last case the summation over possible
transferred momenta “smears out” the interference effect. The pho-
ton emission angle was fixed by the registration channel of the setup
to be 0.31 rad. The orientation dependence of the photon production
into a solid angle of AQ = 1.23 sr on the angle between the electron
beam axis and the crystallographic plane (220) was measured in the
experiment. In the case under study the coherent PBR is the main
contributor. The cross-channel interference, constructive for some
angles and destructive for other angles, alters only slightly the total
output photon intensity. This change was reliably fixed by the ex-
periment, the interference effect being more pronounced for smaller
electron energies (15 MeV). The results of measurements proved in
good agreement with calculations [131].

The PBR suppression effect for a relativistic electron moving
through a thin amorphous carbon foil was reported in paper [128].
A continuous electronic beam with energy 5—7 MeV was employed.
The current in the beam was a few nano-Amperes. Photons with
energies 2—30 keV were registered by a semiconductor Si(Li) cooled
detector. The observations were carried out under an angle of 45
degrees to the electronic beam propagation direction. A more rapid
decrease of the PBR intensity with frequency was detected than that
predicted by theory of the process on isolated atoms. The explana-
tion to the effect suggested in this paper is based on the effective
screening radius of the nucleus by the atomic electrons increasing in
a condensed medium. This results in the decrease of the maximum
frequency wmy, = vj/Ry above which the coherent PBR cross section
is effectively suppressed. Indeed, in the case under study four out of
six electrons of the silicium atom participate in establishing chemical
links with neighboring atoms, so that the effective atomic radius RSﬁ
increases. Calculation involving the effective radius R§T = 4.5R,
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(Rp is the radius of an isolated silicium atom) proved to be con-
sistent with experimental data. In the case under consideration the
density effect in PBR, due to the destructive interference of contribu-
tions from neighbor atoms (see Sect. 6.3), operates in a much more
longwave range, inaccessible for registration by the detectors used in
the experiment. In [128] the contribution of the non-coherent PBR
(with the target’s excitation and/or ionization) was also evaluated.
The experimental data were found to approach an intensity level cor-
responding to the non-coherent PBR for photon energies above 5 keV.
Unfortunately, in this paper there was no possibility to observe pho-
tons with energies below 3 keV, so the PBR suppression effect was
detected in a narrow energy range between 3 keV and 5 keV. Nev-
ertheless, the results obtained in [128] do suggest that PBR can be
used as a tool for structural studies of the medium.

In the recent paper [129] (see also [130]), the relativistic elec-
tron PBR in the polycrystal aluminium was examined. The spectral-
angular distribution of the PBR intensity was measured for electrons
with an energy of 2.4 MeV in the photon energy range from 2 keV to
8 keV in the interaction of the electronic beam with a thin aluminium
foil. The radiation was detected with a Si(Li) detector in a small solid
angle (=~ 1.5x 1073 sr) under the angle 90 degrees with respect to the
electron beam propagation direction. The target’s surface plane was
set under the 45 degrees to the beam axis. The distance between the
target and the detector was about 0.5 m. Note that in this case the
main contribution to the total number of the registered photons is
given by the K -peak of the characteristic radiation of aluminium near
the energy 1.5 keV. According to theory, the PBR intensity under the
given experimental conditions is not more than 1% of this character-
istic radiation intensity which, of course, was taken into account in
processing the experimental data. Also, in order to obtain the PBR
spectrum the background radiation should be also subtracted. It was
found that the PBR spectrum of relativistic electrons in the poly-
crystal aluminium has sharp peaks due to the coherent scattering of
the proper IP field on the ordered structure of microcrystals forming
the polycrystal target. This is in a sharp contrast with the frequency
dependence of PBR in an amorphous medium, where, according to a
calculation made for experimental conditions [129], the PBR inten-
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sity monotonically decreases with photon energy. The nature of the
PBR spectral maxima discovered is similar to the Debye— Shearer
peaks in the X-ray scattering in polycrystals [132]. Results [129] also
suggest that the PBR intensity outside the coherent peaks is strongly
suppressed compared to the emission in an amorphous medium. The
theoretical curve for the PBR spectral intensity proved to be in good
correspondence with experimental data [129]. Note that the intensity
of the ordinary (static) BR in the spectral-angular range under study
was by about 4 times smaller than the BR intensity registered in the
vicinity of the principal spectral peak at the photon energy 4 keV.
Thus, in [129], the frequency dependence for the relativistic electron
PBR in a polycrystal medium was found to be strongly different from
the case of an amorphous target [127], unlike the static BR. PBR
turned out to be very sensitive to the target structure, which signals
good prospects for the elaboration of novel diagnostic methods in
solid bodies by using this phenomenon.

10.3. Polarization bremsstrahlung of heavy charged
particles

An important characteristic property of the polarization BR
is a weak dependence of its cross section on the IP mass [9]. In
the static BR case, as is well known [44], the situation is radically
different. Here the process cross section is inversely proportional to
the square of the reduced mass of the colliding particles, so the static
BR of heavy charged particles is negligible compared to the static BR
of electrons and positrons.

The total proton BR on the hydrogen atom with account for
the polarization channel was first calculated in paper [133]. In this
paper, the BR cross sections for protons and electrons at frequencies
w < wy = viQ /2 have the same order of magnitude. At frequencies
w < vi/ Ry the process proceeds without target excitation (“elastic”
or coherent BR); if w > vi/Ry, BR is accompanied by the atom’s
ionization — this is “inelastic” or non-coherent BR (see Sect. 9.3).

The total BR cross section generated by light ions in colli-
sion with multielectron atoms was calculated in [117]. This work was
stimulated by experiments carried out by the same authors on BR of
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protons and 3He ions in the scattering on a thin aluminium foil [134].
In [134] a significant discrepancy was discovered between experimen-
tal data on radiation from protons with energies 1 MeV and 2 MeV
in the photon energy ranges 2—6 keV and 4-6 keV, respectively,
with theory predictions that ignored the polarization channel. At
the same time, the experiments revealed good correspondence with
the theory for emission of protons with energies above 3 MeV in the
entire frequency range. The calculation performed in [134] included
two radiative mechanisms: static BR of a heavy charged particle and
BR of secondary electrons knocked out by this particle from target’s
atoms. Note that in the case of multicharged heavy IP, dominat-
ing radiative mechanisms can also include a radiative target’s elec-
tron capture into the states from the IP discrete spectrum [135] and
X-ray emission of molecular orbitals [136]. However, for light ions
the relative contribution of these processes to the total emission is
small. Calculations [134] revealed that the secondary electron BR
cross section in the given experimental conditions is larger by 34
orders of magnitude than the static proton BR cross section, so the
latter radiative mechanism can be disregarded in analyzing the exper-
imental data. A characteristic feature of the IP and bremsstrahlung
photon energies studied in [134] is their closeness to the secondary
electron BR “cut-off” frequency (i.e. to the frequency above which
the process is prohibited by conservation laws), which is wP = 202,
i.e. grows linearly with the IP energy. The concept of the polariza-
tion (or atomic) BR was drawn in [117] to explain the above men-
tioned discrepancy between theory and experiment. In this paper
both coherent PBR (without target’s excitation or ionization) and
non-coherent PBR (radiative ionization in terms of paper [117]) were
computed. The contribution due to the latter process proved insignif-
icant for the interpretation of experiments [134]. The point is that
in the low-frequency part of the considered range the coherent PBR
cross section, which is proportional to the square of the number of
atomic electrons N, , exceeds that of the non-coherent process which
is linear on N,. In the high-frequency part of the bremsstrahlung
spectrum the secondary electron BR dominates. The last fact is due
to the “cut-oft” frequency for the secondary electron BR being by 4
times larger than for non-coherent PBR.
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Coherent proton PBR on the aluminium atom was calculated
in [117] using Slater’s wave functions for bound electrons and the cor-
responding screening constants. Two terms S; and S contributed
to the PBR amplitude. The first term (.S;) describes scattering of
the IP proper field on the charge of the target’s electronic core. The
second term (Sg), vanishing in the high-frequency limit, includes
the sum over intermediate states of the atomic energy spectrum.
Note that in [117] Sp was expressed in the closed analytical form.
The calculation turned out to be in good agreement with experi-
mental data [134] in the entire parameter range. The coherent PBR
was found to contribute mainly to radiation of protons with energy
1 MeV. For protons with energy 4 MeV, the secondary electron BR
is the dominating radiative mechanism.

To conclude this section, we concern ourselves with BR in-
duced by heavy ion collisions with targets. Radiation from IP with en-
ergies from 7 to 18 MeV per nucleon was studied in experiments [137].
Multicharged ions N7+ Ne'0t  Ar!7™ were taken as incident par-
ticles and radiated in passing through various gaseous targets. The
thickness of the gas layer was 6 mm and the gas pressure was normal.
The experimental results obtained were interpreted in paper [138] for
radiation of ions N7+ with an energy of 250 MeV in nitrogen and
ions Ar'™ with an energy of 288 MeV in neon. The photon output
was registered by the angle 90 degrees to the ionic beam axis in the
spectral range from 4 keV to 20 keV. The high-frequency part of the
neon ion emission spectrum (from 5 keV to 20 keV) was observed to
have a shoulder-like form. In the argon ion emission spectrum inside
the 4—12 keV range a sharp maximum was registered at the photon
energy near 7 keV. To explain the observed spectra, in paper [138]
contributions from three radiative mechanisms were taken into ac-
count: the radiative capture of the target’s bound electrons in the
IP continuum states, the radiative ionization (non-coherent PBR),
and the secondary electron BR. Static BR, called nuclear in this pa-
per, is negligibly small in this case. The described spectral structure
was established as being due to contribution of the radiative capture
of the target’s electrons into the continuum of the IP energy states,
which has the resonance-like spectral line form and is largest for the
multicharged argon ion. The high-frequency “tail” in both cases is
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due to the secondary electron BR. The calculation also revealed the
radiative ionization contribution to be significant for the nitrogen ion
emission in the low-frequency part of the measured spectrum and
to be negligible for the argon ion emission. This last fact is caused
by the presence of the cut-off frequency in radiative ionization at
we = pv? /2, where p is the reduced mass of electron and IP, v; is
the IP initial velocity (see Sect. 6.2).

10.4. Experiments on the laser-assisted electron
scattering on atoms

When inelastic electron scattering on targets with a core oc-
curs in the external electromagnetic field, a polarization mechanism
mediating energy transfer from the field to the electron through a
virtual excitation of the target can play an important role. This was
predicted theoretically in paper [91]. As was said in the beginning
of this Section, the inclusion of the polarization channel suggests an
explanation to low thresholds of the laser break-down of the alkali
metal vapors [99], which have a large polarizability of atoms.

There are other experiments on inelastic electron scattering
on atoms in a laser field that have been carried out to measure en-
ergy spectra of scattered by a specific angle electrons. To interpret
these experiments, calculation of the process cross section using static
approximation proves to be insufficient in some cases.

One of the first papers of this kind [139] was devoted to stud-
ies of multiphoton processes in electron scattering on argon atoms
assisted by an intensive COs laser emission (with a peak power of
50 MW). The initial electron energy was taken 11 eV. It is essential
that electrons were fixed by a large scattering angle (153 degrees).
The experiment measured the number of scattered electrons with
given energy. The laser field was found to significantly redistribute
over energies the initially monoenergetic electron beam. The central
peak corresponding to elastic scattering was observed to decrease
by about 45%. At the same time, additional maxima appeared in
the energy spectrum of scattered electrons, corresponding to absorp-
tion/emission of several laser photons up to n = 3. The obtained
experimental data turned out to be in good consistence with predic-
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tions of a semi-classical theory elaborated in [140]. In particular, the
so-called sum rule was shown to be fulfilled in the conditions of this
experiment: the total scattering probability, summed over all photon
outputs of the process, is constant. The target’s polarization and
statistical properties of the electromagnetic field effect on the sum
rule for multiphoton induced BR was studied in paper [141] within
the frames of the first Born approximation. It was shown that the
allowance for the polarization channel essentially modifies the sum
rule for sufficiently small electron scattering angles. The expression
obtained in [141] for the total scattering cross section also entails
that the role of polarization effects increases in transition from co-
herent to stochastic radiation. The contribution of these effects to
the scattering transport cross section is maximal for the perpendicu-
lar orientation of the external field vector with respect to the initial
electron velocity vector.

Paper [142], which continues experiments initiated in paper
[139], reported on measurements of the electron spectra in scattering
of electrons with energy 9.5 eV on the helium atoms by a small angle
(9 degrees), assisted by a powerful (P ~ 108 W/cm?) COs-laser
emission. The additional electron peak intensities, corresponding to
absorption/emission of the laser photons by electrons in the process
of scattering, were found to significantly exceed values predicted by
theory [140] which disregards the polarization channel. Experimen-
tal conditions were taken in [142] such that to satisfy as much as
possible the applicability conditions of the so-call Kroll - Watson cri-
terion [140] and to exclude excitations of the target’s electronic core.
The low polarizability of helium also was assumed to minimize po-
larization effects. Nevertheless, results [142] evidence for the Kroll—
Watson formula being insufficient to explain the experimental data
obtained.

Paper [143] studied theoretically the impact of the induced po-
larization of the target and statistical fluctuations of laser radiation
(which in the case of a COs laser is multimodal) on experimen-
tal data [142] for non-linear cross sections of free—free transitions.
In particular, the possibility of helium atoms being in a metastable
2! S-state for some reason with a polarizability of 803 a.u., i.e. by
almost 600 times larger than that of the helium ground state 1'S
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(1.4 a.e.) was taken into account. To assess the role of polarization
effects, formula (8.2) was used; this was obtained in [91] within the
Born approximation frames and, as was noted in Sect. 8.1., does not
take into account non-linear interaction of atomic electrons with elec-
tromagnetic field. As a result, a conclusion was made on polarization
effects being negligible for the helium atom in the ground state. At
the same time, for atoms in the metastable 2!'S state, accounting
for the target’s polarization strongly improved agreement with ex-
periments [142]. However, a sharp decrease in the cross section with
increasing photon output of the process observed in this case contra-
dicts to experimental data. The stochasticity of multimode radiation
of the COy laser, taken into account in [143], somewhat smoothens
this discrepancy. Nevertheless, the residual disagreement was used
by the authors of paper [143] to draw a negative conclusion on the
possibility to explain data [142] by making allowance for the polar-
ization channel and statistical properties of laser radiation. It should
be noted, however, that for the conclusion drawn to be completely
correct, the evaluation of the role of polarization effects in multipho-
ton free—free transitions should be made using formula (8.3), taking
into account non-linear interaction of the external field with atomic
electrons.

10.5. Collision-induced absorption in gases

There is a large amount of experimental material on the sub-
ject closely related to polarization effects in atomic transitions — viz.,
on absorption of electromagnetic radiation caused by collisions be-
tween molecules (collision-induced absorption — CIA) in gases. This
problem is addressed in detail in fundamental monograph [144]. Here
we briefly consider main properties of this phenomenon and describe
some related experiments.

In contrast to ordinary (single-particle) absorption whose in-
tensity is proportional to the first power of the particle number den-
sity (n ), the collision-induced spectrum () is a non-linear function
of the number density. The corresponding virial expansion for a low-
pressure gas has the form

I=An+Bn?>+Cn®+.... (10.1)
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Here the first term describes the absorption of radiation by a non-
perturbed atom or molecule and the remaining series — the collision-
induced absorption. If the process is prevented for an individual
molecule (A = 0), the contribution from CIA remains and can be
significant for sufficiently high gas pressures.

Thus, collisions between gas particles lead to the appearance
of absorption lines in the spectral ranges where there would be no
absorption for isolated molecules. Non-linear terms in Eqn. (10.1)
describe the corresponding binary, triple, etc., radiative collisions.
Note that first experiments on this subject, carried out as early as
in 1885 [145], discovered new absorption bands in oxygen under a
pressure of tens and hundreds atmospheres, which were absent at
the atmospheric pressure. The corresponding absorption coefficients
proved to be proportional to the gas density square (violating the
Bar’s law), corresponding exactly to binary collisions.

According to modern concepts [144], the CIA spectra result
from an electric dipole moment of the system, also called a super-
molecule, appearing in the collision. From this viewpoint CIA is
similar to PBR, in which the target’s dipole moment is also induced
by a collision with another particle. For PBR, in contrast to CIA,
one of the particles must be charged. Note that PBR was considered
for atom—atom collisions as well in paper [146].

A characteristic feature of the CIA spectra is that they have
larger line widths than from single-particle absorption, usually of
the order of 10" - 10" s~!, which reflects the small life-time of
the supermolecule. Another distinctive feature of the process under
consideration is a small value of the induced dipole moment y, which
falls within the range 0.01 —0.1 Debye. Recall that for polar molecules
the corresponding value is typically about several Debyes.

The most general expression for absorption of a quantum hw
induced by a collision between particles A and B has the form

A+B+hw— A+ B + Ac. (10.2)

Here symbols A’, B’ denote the colliding molecules in excited states,
Ae is the change in the translation energy of the particles. In the
particular case A = A’, B = B’ all the photon energy is expired to
increase the kinetic energy of the systems’ translation motion, and the
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corresponding absorption spectrum is called translational [144]. This
process is similar to the inverse polarization bremsstrahlung effect
without target excitation. The translational spectrum is character-
istic for CIA in single-atom inert gases, then the line center falls at
zero frequency. In other cases rotational and vibration— rotational
molecular excitation occur as well, with transitions prohibited for
isolated and excited molecules. The resulting spectrum is a vibra-
tion—rotation — translational with characteristic frequencies lying in
far infrared and microwave wavelength range. The maximum fre-
quencies of such a “rovibro— translational” spectrum correspond to
energies of the vibration—rotation — translational transitions (an also
their sums), with the band widths being determined by the super-
molecule life time. Such spectra are universal in the sense that they
appear in all molecular gases.

In some cases CIA can be accompanied by excitations of elec-
tronic degrees of freedom of the colliding particles. The corresponding
spectrum lies in the visible and ultraviolet diapasons. CIA on elec-
tronic transitions ¥, — a'A,, b'SS in the oxygen molecule [147]
may provide an example. Note that both these transitions in an
isolated molecule are forbidden by selection rules. Nevertheless, ex-
periment [147] reported on an absorption coefficient of about 24 cm ~*
near the line maximum (7900 cm ~!), corresponding to the transition
3Zg_ — alAg, measured at a temperature of 297 K and a gas par-
ticle number density of 132 amagats (1 amagat =~ 2.710'% c¢m=3).
Absorption bands corresponding to the excitation of the blﬁl; state
and simultaneous excitation of the colliding molecules to the alAg
and blE;]F states were also detected in this experiment.

CIA in a mixture of inert gases when there are no vibration—
rotational degrees of freedom allows the most simple description.
Note that CIA in a monoatomic gas is absent due to the absorb-
ing supermolecule having a symmetry center. This makes the dipole
moment impossible to emerge. The dipole moment in collision of two
different atoms appears by two mechanisms: the exchange and disper-
sion ones [148]. The first mechanism typically operates at small dis-
tances R between the colliding particles and the corresponding dipole
moment falls off exponentially with R, po = po exp (—R/Ry), here
Ry is the distance of the maximum approach. The dispersion mecha-
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nism is essential at large R. Then the induced dipole moment admits
the expansion pp ~ —D7/R" — Dg/R% — ... [144].

If at least one of the colliding particles is a (non-monoatomic)
molecule, other mechanisms for the dipole momentum appearance
can operate, which are related to the far-acting electric field of the
molecule. For symmetric diatomic molecules like Ho or No, the
lowest term of the molecular field expansion is quadrupole, and the
dipole moment induced by this field in the particle—partner at large
distances can be represented in the form

sz\/gqga/R4, R>Ry. (10.3)

Here ¢ is the molecule’s quadrupole moment, « is the particle—
partner’s polarizability. Equality (10.3) revealed the mentioned above
analogy between CIA and polarization effects in atomic transitions:
in both cases the interaction with electromagnetic field is mediated
by polarization of the electronic core of one of the colliding particles
by the field of the particle —partner. The induced dipole moment can
be induced by gradients of the electric molecular field and also by a
collisional breaking of the initial molecular symmetry.

The spectral absorption coefficient in an inert gas mixture due
to binary collisions measured at the room temperature [149, 150] is
presented in Fig. 35. The absorption coefficient k,(v) is normalized
on the product of the component number densities, which allowed
us to show in one plot the data obtained for different pressures in
mixtures. A characteristic feature of the demonstrated relationships
is the presence of broad maxima in the far infrared diapason that
shift towards high frequencies as molecular velocity increases. Using
data from Fig. 35

Ka(V) &< mynov g(v) {1/ [1 — exp (—%)] } , (10.4)

where k is the Boltzmann constant, ¢ is the speed of light, T is
the temperature, one can recover spectral functions ¢(v) that de-
scribe CIA in different gas mixtures. Getting rid off the frequency-
dependent factor in the curved brackets of Eqn. (10.4) results in the
maximum of the spectral function g(v) falling at the zero frequency,
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Fig. 35. The results of measurement of the binary
absorption coefficient by inertial gas mixtures He -
Ar, Ne— Ar [149], and Ar— Kr [150] at the room
temperature, normalized to the product of concen-
trations.

which is typical for the translational CIA spectra. The spectral func-
tion half-width can be evaluated using the formula

2.5

mTCco

Av = 012, (105)

where 715 is the mean relative velocity of different atoms, the pa-
rameter o is the square root of the interatom interaction poten-
tial Vipe(o) = 0. This quantity for mixtures He—Ne, Ne— Ar, Ar—
Kr takes the value 0.295, 0.305, 0.345 nm, respectively. The spec-
tral function half-widths for the given mixtures are obtained from
Eqn. (10.5) to be 129, 60, 37 cm ~!, respectively, which is in reason-
able agreement with experimental data from Fig. 35. Note that the
form of the spectral function considered can be approximated by the
Lorentzian curve at the center (i.e. near the zero frequency) and falls
off exponentially at the edges.
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An interesting feature of the CIA spectra, which has a direct
analogy with the density effect for the relativistic particle PBR in an
amorphous condensed medium (see Sect. 6.3), is the presence of the
so-called “inter-collisional dips” in the spectral function and the ab-
sorption coefficient at sufficiently low frequencies. For example, the
spectral function of CIA in a 1: 1 mixture of helium and argon at the
total pressure of 160 atm reveals a dip at frequencies below 10 cm ~*.
This effect results from a destructive interference of contributions
to absorption due to successive collisions of gas molecules, when the
time interval between the collisions becomes of the order of the inverse
frequency of the electromagnetic field. The destructive interference
appears because the induced dipole moments in two successive colli-
sions between molecules turn out to be more or less antiparallel, like a
fast electron in a condensed medium induces antiparallel polarization
in the medium’s atoms on both side of its trajectory.

CIA plays an important role in astrophysical applications, es-
pecially when other radiative mechanisms do not contribute to the
considered spectral range, for example in cool areas of planet at-
mospheres. For example, the first direct evidence of the presence
of Hy molecules in atmospheres of the external planets was obtained
in [151] by reproducing in the laboratory conditions a diffusive struc-
ture at the wavelength of 827 nm observed in spectra of Uranus and
Neptune. Experiment [151] studied radiation absorption in hydrogen
at the 80-m wavelength and a temperature of 73 K. This structure
proved to be the line S3(0) in the collision-induced vibration— ro-
tational band 0 — 3 of the Hy molecule. In this paper, another
spectral feature at the wavelength of 816.6 nm was identified to be a
collision-induced double transition in Hy molecules. The experiment
used a pure hydrogen and the observed double transition was rela-
tively strong. At the same time, it was observed to be much weaker
than the line S3(0) in spectra of the external planets. This fact en-
abled making the conclusion that an appreciable amount of helium is
present in the atmospheres of Uranus and Neptune as helium notably
strengthens the S3(0) line and cannot affect the double transition in
colliding hydrogen atoms. Presently, CIA is recognized to play an im-
portant role in the temperature balance and atmospheric structure
of giant planets. The CIA-spectra are also interesting for studies of
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some stellar atmospheres, such as in late stars, low mass stars, brown
dwarfs, some cold white dwarfs, etc.

In conclusion, we point to another relative CIA-phenomenon
that can also be interpreted to be a polarization effect, viz., an atom
excitation in collision with a photon and an electron [152]. This is
a direct analog of CIA with the substitution of the colliding neutral
particles by electron. It can also be represented using Feynmann
diagrams, shown in the Introduction, and its cross section can be
expressed through the non-diagonal matrix element of the operator
of the radiation scattering on atom. This process was studied in
detail experimentally [153] using the technique of triple collision of
electron — photon —atomic beams. In particular, the excitation of the
2(39) state of the helium atom was observed in collision with electron
assisted by a low-power CO. laser field in the form of two satellite
peaks in the spectrum of energy losses of inelastically scattered elec-
trons at = 19.817 £0.117 eV.

A multiphoton modification of atomic excitations in simulta-
neous collision with electron and photon was studied theoretically
in [154].

10.6. Polarization effects near the 4f-structure in BR
on metallic targets

Experiments [155, 156] examined emission spectra of M-series
of the metallic lanthanum and cerium (the wavelength 14—15 A)
excited by an electronic beam with the near-threshold energies (the
current up to 100 mA). As a result, a spectral structure (called 4f -
structure) was discovered, whose amplitude— frequency characteris-
tics were in close relation with the energy of activating electrons. An
important signature of this structure was a drastic intensity increase
in the electronic beam energy approaching the excitation potentials
of the 3d5/5, 3d3/o subshells of lanthanum and cerium. An analysis
of a large amount of emission spectra (40 for lanthanum and 70 for
cerium), registered in changes within the electronic beam energy in
1-2 eV steps with the energy dispersion of less than 0.2 eV. This re-
vealed that the discovered structure is a peculiarity in the continuum
emission spectrum of exciting electrons with their transition to the
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4f -state located above the Fermi sea, and not the usual character-
istic emission of M-lines of the corresponding atoms. This structure
was also observed for the beam energies away from the excitation
potential of the 3d-subshell in the form of a peak shifted from the
short-wavelength boundary of BR toward low energies (by 5.5 eV for
lanthanum). Such a spectral localization of the emission maximum
is consistent with data on the energy of the 4f -state lying by 5.5 eV
above the Fermi level in the metallic lanthanum. The intensity of
this peak decreased with electron energies up to the detuning off the
M-series excitation potential by 10— 15 eV, while the location with
respect to the short-wavelength boundary remained unchanged.

For the beam energy approaching the energy of the charac-
teristic My -line (Enmv(La) = 834 eV), the radiation intensity at
the 4f-structure center (hwmax ~ 831 eV) increased by more than
two orders of magnitude, approaching a maximum (for lanthanum) at
FEel beam = 836.5 V. Further intensity decrease in the structure center
with excitation energy growth proceeded more slow than its increase
in the low-frequency wing (for Awmax < Fay ), until the 4 f -structure
central radiation intensity increased again near the energy of the
Mg -line photons. Thus a spectral asymmetry in the emission 4f -
structure excitation was observed: the radiation intensity in the low-
frequency wing of the line was lower than in the high-frequency wing.

Figure 36, taken from paper [156], shows the dependence of
the radiation intensity in the 4f -structure on its central frequency
for cerium. The minimum of the intensity was observed at a photon
energy of 868.1 eV. The radiation intensity in this minimum turned
out to be 175 times as small as in the first maximum at 882.2 eV
and 105 times as low as the second maximum intensity at 900.2 eV.
The peak intensity ratio 5 : 3 is approximately equal to the statisti-
cal weight ratio for M5 and My -levels, and their central frequencies
are somewhat shifted toward low energies with respect to frequencies
of the M, and Mg lines. This shift has the opposite sign as the
corresponding shift of the maximum radiation near the 4d-subshell
ionization potential with respect to photoabsorption maximum in lan-
thanum [121] and xenon [120]. Figure 36 also clearly demonstrates
the asymmetry in the spectral form of the 4f-structure mentioned
above.
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Fig. 36. The intensity of the bremsstrahlung with
electron capture into the 4 f -state in scattering on
metallic cerium as a function of the electron beam
energy [156].

In the experimental works cited above, a qualitative interpre-
tation of the obtained results was suggested based on the assump-
tion that the increase in the inelastic scattering cross section of the
emitting electron into the 4f -state is related to the formation of a
short-living excited state of negative ion 3d~'4f2?. It was stressed
then that for atoms of the targets considered, a strong overlapping of
the 4 f-wave functions with the 3d-wave functions takes place, which
provides a strong spatial coupling between the corresponding states.

Asymmetric resonances in BR observed in experiments [155,
156] were reproduced theoretically in paper [157] using the notion
of the polarization BR mechanism. This paper in particular stressed
that the important role of the polarization channel in considered cases
was due to a large polarizability of the 3d-subshells of lanthanum and
cerium atoms. Qualitatively, the picture is as follows. The scattering
electron, in addition to emission due to the proper dipole moment, ex-
cites by its Coulomb field an oscillating dipole moment on the atomic
transition (3d%4f)— (3d'?), which ultimately leads to a resonance
increase in the 4f -structure intensity. Within this approach, the to-
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tal emitting dipole moment is the sum of two terms— the direct and
polarization —in correspondence with the expression [157]

(4741 |1/rn[3dEg)(3d|z|4f)
E4f +E4f — F3q — iF/2 - F

D(E) o (4f|2|Ey) — +exchange terms.

(10.6)
Here E is the incident electron energy, E, is the g-component of its
wave function, I' is the width of the resonance state of the negative
ion (3d='4f?), z is the projection of the incident electron’s radius
vector. For the relative intensity, which is an analog to the spectral
R-factor, the following expression was obtained:

2
_ 1+ZE“¢ . (10.7)

Here functions a;(E) = g; b(F), are introduced, where g; are statisti-
cal weights of the states and b(F) is a coupling constant determined
through the corresponding radial integrals. The coupling constant
was calculated from the first principles to be b(E = 62 Ry) = 1.1 Ry,
which was in a reasonable agreement with experimental values b =
10 — 15 eV [155].

With the use of Eqn. (10.6), the 4f-peak intensity was com-
puted based on the dipole formula I(E)  |D(E)[* with allowance
for the 3d-subshell fine splitting. For crude comparison with experi-
ments on lanthanum, the following parameter values were chosen in
this paper: the resonance width I' = 0.2 Ry, the fine splitting value
Ey — Fy = 1.2 Ry. The model calculations successfully reproduced
the main features of the phenomenon found by experiment, such as
the asymmetry of the emission resonances with interference dip in
the low-frequency line wing. Besides, the calculated energy detuning
of the interference minimum off the first maximum position proved to
be equal to 10 eV. This is consistent with experimental values ranging
from 10-15 eV [135]. In addition, the calculated radiation intensity
excess in the 4f-peaks over the background intensity turned out to
be somewhat lower than the experimentally registered value.

The considered effect of resonant intensity increase in radiation
of the 4 f -structure near the 3d-subshell ionization potential does not
occur for frequencies corresponding to excitation of the 4d-electrons,
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as was shown, in particular, by calculations [158]. As was noted in
paper [106], this fact is apparently due to a low formation probability
of short-living dielectronic states (4d?4f?) in lanthanum.

11. Conclusion

The above consideration suggests that the plasma models of
atom provides a fairly reasonable approximation to consider a wide
range of radiation— collisional effects with participation of heavy
atoms and ions. The plasma approach is advantageous in being uni-
versal and providing possibility to establish various similarity laws
(“scalings”) for the effects under study. Naturally, the averaged sta-
tistical description does not take into account some peculiarities of
individual atomic spectra. As a rule, these features are manifest in
specially designed experiments involving directed beams of charged
particles when one can ignore effects of the ambient medium. At
the same time the averaged radiation characteristics, satisfactorily
described by the statistic plasma models, are important for radia-
tion of particles in the medium. In particular, the application of the
statistic approach allows one to calculate BR on atoms in a wide
range of photon energy [159], as well as to compute bremsstrahlung
emission and radiative recombination rates from different chemical
element admixtures in a high-temperature plasma.

There is a great variety of polarization radiation effects con-
sidered above including radiative transitions of different types. The
intensity of polarization radiation of electrons on complex atoms and
ions varies within a broad range determined by the generalized tar-
get’s polarizability and effective ion charge acting on electron and
changing from the ion’s charge to the nuclear charge. The radiation
can be coherent or non-coherent with respect to the contribution of
atomic electrons, depending on the value of the momentum transmit-
ted to the target.

In practical applications of special interest are integral charac-
teristics of PR, such as the total radiative losses in plasma with heavy
ions. The contribution of the polarization channel can be naturally
characterized by the integral R-factor ( Ryt ), which is the ratio of
the integral over frequency polarization losses to integral losses in the
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Fig. 37. The integral R-factor dependence on
the incident electron energy FE for different nuclear
charges of the Thomas— Fermi atom Z: 1 — Z =
30,2 —Z2=60,83—Z72=290.

static channel. The dependence of the factor Ri,; on the incident
electron energy for different nuclear charges is shown in Fig. 37. It
is seen that the polarization channel contribution is comparable to
that from the static channel, especially for mild electron energies.
With increasing energy of electrons, their penetration into the core
increases and the polarization channel contribution diminishes [161].

Of a great interest are polarization effect studies in line spectra
of multicharged ions that appears as a set of bound —bound transition
lines corresponding to states with a complex electronic configuration
of the core. With increasing the ionic charge, i.e. the radiative tran-
sition frequency, the role of the dynamic polarizability of the core
should increase, in contrast to the static polarizability, again charac-
teristic to transitions in the alkali elements.

Direct measurements of the polarization recombination are cer-
tainly interesting, too. Apparently, this can be most simply carried
out in experiments with multicharged ions using storage rings. Here,
however, the polarization recombination observations are related to
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a thus far unclear reason for a significant increase in the total re-
combination probability. This was also found for ions without any
electronic core [66].

The polarization radiation from heavy particles, in particular,
for multicharged ions in their motion inside dense gaseous or solid tar-
gets, is studied to a much less degree than the polarization radiation
from electrons. The main problem in studying these phenomena lies
in distinguishing between the proper polarization radiation and the
radiation from secondary electrons resulted from the target’s matter
ionization.

The polarization radiation, including the polarization recom-
bination, is an essential effect for the inelastic electron scattering on
metallic clusters near the giant resonance frequency [162]. Radiation
properties of the clusters have been studied by the present time quite
well (see monograph [163]). They can be used to calculate polariza-
tion characteristics of these objects and the corresponding PR inten-
sities (see review [164]). Studies of such phenomena on nanoparticles
of other types, such as semi-conductor and dielectric nanocrystals,
seem to be very interesting.

Interference effects in the inelastic electron scattering on ions
with a core caused by the interaction of the usual and polarization
channels, studied in detail theoretically [93, 102], need to be verified
experimentally. The prospects of their practical applications should
also be investigated.

Significantly interesting are studies of radiation from hot gases
appeared in shock waves or cavitation waves in sonoluminescence.
BR has been considered as a possible mechanism for emission in these
phenomena [165]. Here the conditions may be made such that PR
prevails over the static channel due to the elastic electron scattering
[144, 166].

The question on the role of polarization radiation in a cold
medium is very interesting and remains to be solved. Here we deal
with the emission from a cold medium in which there are virtually no
internal degrees of freedom capable of producing radiation. In these
conditions only the polarization channel remains that can provide ra-
diative cooling at any finite temperature. The possibility of perform-
ing the corresponding experiments needs to be additionally justified.
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Thus we can state that the notion of atom as a plasma clot
and the related treatment of the polarization radiation, in addition to
its important methodological meaning, has also proven very fruitful
in practical applications.
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ASYMPTOTIC THEORY OF CHARGE
EXCHANGE AND MOBILITY PROCESSES
FOR ATOMIC IONS

B. M. Smirnov

1. Introduction

This paper is devoted to the asymptotic theory of the resonant
charge exchange process in slow collisions and the theory of atomic
ion kinetics in gases within an external electric field. Note the pecu-
liarities of the asymptotic theory version under consideration. First,
in contrast to models, the asymptotic theory uses a strict expansion of
the cross section in power series of a small parameter that is inversely
proportional to the typical distances between colliding particles at
which the electron transfer proceeds. This allows one to estimate the
accuracy of results under certain conditions. Second, we consider the
simplest version of the asymptotic theory by taking into account two
lower-order expansion terms. This allows us to express the cross sec-
tion of resonant charge exchange through asymptotic parameters of a
valence electron inside an isolated atom when the electron is located
far from the atomic core. Third, if the electron transfer takes place
between degenerated states of an atom and its ion, we find the mean
cross section averaged over the electron-degenerated initial states of
the colliding ion and atom, and this mean cross section pertains to a
certain scheme of coupling of the ion and atom electron momenta and
the rotational momentum of colliding atomic particles in the course
of their collision. In this manner we find the mean cross section for a
certain scheme of summation of electron momenta by averaging this
cross section over the initial conditions. On this basis one can then
estimate the accuracy of this mean cross section.

Basically we use a simple version of the asymptotic theory for
the resonant charge exchange process in slow collisions, which first

209
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considers the asymptotic behavior of valence electrons in an isolated
atom. We then split electron levels for an atom and its ion at large
separations, and thus find the cross section of the electron transfer
process, expressed through asymptotic parameters of a valence elec-
tron in an isolated atom, through atom and ion quantum numbers
and through the collision velocity. The trade-off for simplifications
is in the resulting accuracy which depends on the complexity of col-
liding particles and can not be improved within the framework of
this version. This accuracy decreases with the complexity of collid-
ing particles and in many cases is restricted by our knowledge of the
asymptotic parameters of isolated atoms and ions. Nevertheless the
accuracy of the asymptotic theory version under consideration is usu-
ally higher than that for experimental cross sections of the resonant
charge exchange process, with a possible exception of cross sections
obtained from mobilities of inert gas ions in parent gases. For this
reason, experimental data for the cross sections of resonant charge
exchange occupy a small part of this paper, the primary objective
of which is to formulate the asymptotic theory of resonant charge
exchange in the simplest form.

The accuracy of the cross sections obtained from the asymp-
totic theory is higher when the collision velocity is lower. Therefore
the best application of this theory relates to kinetics of atomic ions in
a parent atomic gas within an external electric field. The second part
of this paper is devoted to the mobility and diffusion of atomic ions
in parent and foreign gases. As the cross section of resonant charge
exchange exceeds the cross section of ion—atom elastic scattering at
high collision energies, the mobility of atomic ions in parent gases
is expressed through the resonant charge exchange cross section. In
considering some aspects of the kinetics of atomic ions in gases in an
electric field, we follow specific methodical approaches that simplify
the analysis and can be useful additions to general concepts and data
for the ion mobility in gases [1-8].

Accordingly, the aim of this paper is to formulate the asymp-
totic theory of the charge exchange process in slow collisions involving
atomic ions and to consider some aspects of the kinetic theory for the
drift of atomic ions in gases with account for the resonant electron
transfer cross sections.
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2. Asymptotic theory of the interaction
of atomic ions with parent atoms
at large separations

2.1. Character of the resonant charge exchange process

The resonant charge exchange process proceeds according to
the scheme:
AT+ A A4+ AT, (2.1)

As a result of this process, a valent electron transfers from the field
of one atomic core to another. In slow collisions, when the colli-
sion velocity is small compared to the atomic velocity, the rate of
this process is expressed through parameters of electron terms of a
quasimolecule constituted from the colliding particles. This process
was first analyzed by Massey et al [9, 10] on the basis of the phase
theory of collisional processes. Sena [11-13] used the classical char-
acter of motion of colliding particles. This enabled him to ascertain
the physical nature of the process and to find the dependence of the
cross section on collisional parameters. In particular, the resonant
charge exchange cross section oy, depends on the relative velocity
of collision v as [11, 14]

T . 95U

— . 2.2

Ores —

Here v = +/2I, I is the ionization potential of an atom A, and
parameter vg > 1. Since formula (2.2) may be rewritten in the form

™
Ores = W(")’fio)2 s

below we shall apply the asymptotic theory of the resonant charge
exchange process which uses a small parameter 1/vRy. We determine
the cross sections within the framework of the asymptotic theory
vRo > 1 under real conditions of ion—atom collisions.

Analyzing the resonant charge exchange process, we focus on
the theoretical evaluation of the cross sections for three reasons. First,
the accuracy of the asymptotic theory is better than the experimen-
tal results (possibly, excluding the case of inert gases, if the resonant
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charge exchange cross sections is derived from the mobility of ions
in parent gases). Second, experimental data is restricted to a part
of elements, and the collision energies are limited for some elements.
Third, in many cases we can not estimate the accuracy of exper-
imental data. Hence the experimental studies provide a restricted
contribution to the data about resonant charge transfer. Below we
will use the experimental data only for demonstrating advantages of
this theory.

The cross section of a slow process can be expressed through
parameters of electron terms responsible for this process. The eigen-
states of the quasimolecule Aj are divided in odd and even states
in accordance with the wave function properties of these states, al-
lowing conservation or change of the sign as a result of reflection of
electrons with respect to the symmetry plane that is perpendicular
to the molecular axis and bisects it. If initially an atom A and ion
AT have only one electron state, there are only one even and one odd
quasimolecule state, with the wave functions v (r, R), 4, (r, R), and
energies £4(R), e, (R). Here r defines electron coordinates, R is the
distance between the nuclei. At large separations we have

Yy = % (1 +42), Pu = % (1 —2), (2.3)
where the wave functions 1,1, correspond to electron locations in
the fields of the first or second ion correspondingly (see Fig. 1).

Assuming the absence of inelastic transitions, one can con-
struct a molecular wave function ¥ provided that before the col-
lision t — —oo the electron is bound with the first atomic core
(¥(r,R,t = —o0) = 91(r)). Since two quasimolecule states are
developed independently, we have

1

¥(r,R,t) = 7

t
Qﬁg(r, R) exp [—Z' / €g(t/) dt/:|
t

—I—%wu(r,R) exp [—i / su(t')dt'] . (24)

—00

Here the relative motion of nuclei R(t) is introduced which for free
motion has the form R = \/v%t2 + p?, where v is the collision ve-
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Fig. 1. Electron in the field of two identical cen-
ters. Reflection in the symmetry plane corresponds
to the transformation 9y — 9, 9o — 1. This
yields the eigenfunctions of the system, so that the
symmetric electron wave function which retains its

sign under reflection is ¢, = % (11 +12) and the

antisymmetric wave function is 1), = \% (11 —1a) .

locity and p is the collision impact parameter. From this we find
the probability Prs of the charge exchange process and its cross sec-
tion [15]:

o
A(R) =€y — €y Ores = /27rpdpsin2g(p) .
0

Formula (2.5) expresses the parameters of the charge exchange pro-
cess through electron terms e4(R),e,(R) of the quasimolecule con-
sisting of colliding particles. This connection was established by
Firsov [15] and Demkov [14].
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One more peculiarity of this process in slow collisions is the
large cross section compared to the typical atomic value. This al-
lows us to construct an asymptotic theory [16 — 18] which represents
the cross section as a result of expansion over a small parameter
1/(y/o7y). In this case, restricting ourselves to using two terms in the
expansion in series of the small parameter, we have for the charge
exchange cross section [16 —18]:

R2 -C
Ores = % where ((Ro) = 67 =0.28. (2.6)

Here C = 0.577 is the Euler constant.

Thus, within the asymptotic theory of the resonant charge ex-
change process, we suppose the electron transition to occur at large
distances between nuclei compared to the orbit size of the transferring
electron. Then we use the asymptotic expression of the exchange in-
teraction potential of the ion and atom A(R) = ¢4—¢, and this value
is expressed in turn through asymptotic parameters of the atomic
wave function at large distances of the electron from its atomic core.
In this version of the asymptotic theory we do not use the electron
distribution inside the atom, and information about the electron be-
havior inside the atom is included in the theory indirectly through
the asymptotic coefficient of the valence electron.

2.2. Ion-—atom exchange interaction potential

We divide the problem of determination of the cross section
of resonant charge exchange in to two steps. First we determine
the exchange interaction potential of an ion with the parent atom,
and next we connect the cross section with the exchange interaction
potential. Below we solve this problem in a general form for the atoms
and ions in the ground states or in lower excited states if atoms and
ions have the same electron shell as in the ground state. We begin
by solving for the exchange interaction in the simplest case if an
s-electron is found in the field of two structureless ions.

The exchange interaction potential of atomic particles is de-
termined by overlapping of electron wave functions belonging to dif-
ferent atomic centers. Below we determine the exchange interaction
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potential of an ion with the parent atom connected with transition
of a valent electron from the field of one ion to the field of another.
The character of this interaction due to overlapping of the electron
wave functions is given in Fig. 2. We first consider the case when the
valent electron is found in an s-state so that the considered system
has two states that can be composed from states related to location
of the electron in the field of the first and second ion (see Fig. 1).

4 5 3
|
J———
] T RN
| | T
[ P
7 | 7
|
AL | 7
/A [
/7\L| | IJ/"/[
/ a— | At /
R S ‘: ——",”
1 6 2

Fig. 2. Electron regions which determine the ex-
change interaction potential for an ion and parent
atom at large distances between nuclei. 1,2 are
internal regions of atoms where the electrons are
located; 3,4 are regions where the asymptotic ex-
pressions for the atomic wave functions are valid; §
is the region where the quasiclassical approach is
valid for valent electrons (it is restricted by the
dotted line); 6 is the region which mostly con-
tributes to the exchange interaction potential of
these atoms. The volume of region 6 is of the or-
der of R?, where R is the distance between nuclei,
and regions 1,2 occupy a volume of the order of the
atomic value. Using asymptotic data for atomic
wave functions one can evaluate the exchange in-
teraction potential to an accuracy of the order of

1/R?.

Let us denote by 11 the electron wave function that is centered
on the first nucleus, and by 9 the wave function centered on the
second nucleus. The electron Hamiltonian has the form

N 1 1
H = —§A+V(’I’1)+V(T‘2)+§. (27)
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Here R is the distance between atomic cores, 71,79 are the distances
of the electron from the corresponding nucleus, V' (r) is the electron—
ion interaction potential which takes the Coulomb form V(r) = —1/r
far from the ion. The symmetry of the problem under consideration
implies that the symmetry plane is perpendicular to the line connect-
ing nuclei and bisects it. The electron reflection with respect to this
plane conserves the electron Hamiltonian. Hence, the electron eigen-
states can be divided into even and odd, depending on the property
of their wave functions to conserve or change their sign as a result
of reflection with respect to the symmetry plane. Evidently, at large
separations these wave functions take the form of the following com-
positions of % and 12 which correspond to location of the electron
in the field of the corresponding atomic core:

o = %wl +ipa), = %wl ). (2.8)

These wave functions of interacting ion and atom satisfy the Schro-
dinger equations

Hipy = egthy, Hipy = eythy (2.9)

where ¢4(R), 4 (R) are the eigenvalues for the energies of these states.
We define the exchange interaction potential in this case as

A(R) =¢4(R) — eu(R) . (2.10)

In order to determine this value at large distances between
nuclei, we use the following method [15]. Let us multiply the first
equation (2.9) by 1y, , the second equation by ¢y, take the difference
of the obtained equations and integrate the result over the volume
Q which is a half-space restricted by the symmetry plane. Since
the separation between the nuclei is large, the wave function 1o is
zero inside this volume and the wave function 1 is zero outside this
volume. Hence f Q/JuQ/Jg dr = 1/2, and the relation obtained has the
form

Eg (R) B 5u

. = / ($uldipy — g Ath,) dr

1 0
5/ Z7/12)ds

S
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where S is the symmetry plane which restricts the integration region.
We use real wave functions in relations (2.8) and the z axis connects
the nuclei. Take the origin of the reference frame in the center of the
line connecting nuclei. Since the electron is found in the s-state in
the field of each atomic core, its wave functions in this coordinate
system can be represented in the form

1/11:1/1(\/(z+§)2+p2) ;
w5 ).

where p is the distance from the axis in the perpendicular direction
to it. Since ds = 2mpdp, we obtain from the above relation [15]

e)(R) — eu(R) = 07027Tpd,0 [q/; (\/(z—§)2+p2)
o (J )
(e B ) 2o (D)
7odp 2¢2 (\/ﬁ) =R ? <§) (2.12)

0

(2.11)

In deriving of this formula we employed the obvious relation

5] _rie ()

9z
Now let us connect the molecular wave function (r) of the
s-electron with the atomic wave function 1, which at large elec-
tron distances from the atomic core is determined by the Schrodinger
equation

1 02 1 2
-5 W (T¢at) - ;¢at = _% "/’at
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where 72/2 is the electron binding energy. The solution of this equa-
tion is given by formula

at(r) = Art/ 7" le™ (2.13)

Take the molecular wave function in the form (r) = x(r)ya(r)
and compare the Schrodinger equations for molecular and atomic
wave functions near the axis and far from nuclei where one can use
the asymptotic form of the interaction potential V(r) = —1/r in
formula (2.7) for the electron Hamiltonian. So, neglecting the second
derivative of x near the axis, we have from the Schrédinger equation

for ¢

195 1 1

—+|=5—-——]x=0.

K (97’1 <R 7’2> X

Solving this equation, we connect the molecular wave function of the
s-electron near the axis with the atomic wave function that allows
us to express the exchange ion—atom interaction potential through
asymptotic parameters of the valent s-electron in the atom [17]:

2

A= AR e Py (2.14)

In particular, this formula yields the exchange interaction potential
of the proton and hydrogen atom in the ground state (y =1, A =2)
[19, 20]

A= éRe_R.
e
Formula (2.14) is the asymptotic expression for the exchange inter-
action potential of a one-electron atom with a valent s-electron and

its atomic core. The criterion of validity of this formula reads:
Ry>1, Ry¥>1. (2.15)

Generalizing formula (2.14) to the interaction of an one-elect-
ron atom with the parent ion, if the electron angular momentum is
[ and its projection onto the molecular axis is p, we represent the
electron wave function in the form

¢(1“) = Y'lu(ea SD)Q(T) ’
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where 7,60, are the spherical electron coordinates (provided that
its center coincides with the corresponding nuclei) and the z axis is
directed along the molecular axis. To determine the exchange inter-
action potential, we proceed analogously as in deriving formula (2.14)
for the s-electron and make changes in integration with respect to dp.
Then we have

o0
A~ [ 0.0 2*()p dp
0

where r = /R?/4+ p? is the distance from each nucleus to the
electron located in the symmetry plane. Since ®(r) ~ e the
integral converges at small p (p ~ \/R/y < R) (see also Fig. 2).
Then ®(r) = ®(R/2)e~77"/E . This corresponds to small angles 6 =
2p/r, and since Y}, (0, ) ~ 6* for 6 < 1, we have

2p |2#
£l . 4ypdp/R,
R‘ Ypdp/

oo
A=Ay / =20 IR 1Y, (0,0)
0

where Ay is the exchange interaction potential given by formula
(2.14) in the case of zero angular momentum of the valent electron
with the same radial wave function. Since the exchange interaction
potential does not depend on the sign of i, we assume the momentum
projection to be positive. Thus, we find for the exchange interaction

potential of a one-electron atom with the parent ion [18, 21, 22]
A, = AR e Ry @i+ Di+pt (2.16)

(0= )l 2y

In the case of structureless cores and nonzero electron momen-
tum the ion—atom exchange interaction potential is characterized by

the electron momentum projection m onto the molecular axis and is
given by [18, 21 —23]

(21 4+ 1)(I + |m])!
(I~ [m])! [m|!(By)l!

Ay = Ao (2.17)

where [ is the electron orbital momentum and Ag is the exchange in-
teraction potential of the s-electron with the same asymptotic radial
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wave function (2.13) of the transferring electron. Formula (2.17) de-
scribes the ion—atom exchange interaction potential if the atom has
one valent electron at large separations according to criterion (2.15).
This interaction potential is determined by the overlapping of elec-
tron wave functions corresponding to location of the electron in the
field of the first and second cores (see Fig. 2). According to the crite-
rion (2.15), this formula is not suitable for highly excited atoms and
relates to the ground and lowest excited atomic states.

2.3. Ion-—atom exchange interaction for light atoms

We now generalize formula (2.17) for a light atom and ion
with noncompleted electron shells when spin-orbit splitting of atom
and ion levels is small and neglect relativistic interactions in them.
This corresponds to the LS-coupling scheme for the atom. At large
separations the quantum numbers of the molecular ion are the atomic
quantum numbers LSMyp Mg (the orbital momentum, spin and their
projections onto the molecular axis), and the same quantum numbers
of the ion are [smmg. We sum up the electron orbital momentum and
spin le,% and these momenta of the atomic core [s into the atom
momenta LS, and then the atom spin S and the spin of another
atom core s are summed into the total spin I of the molecular ion.
Then the atomic wave function is expressed through parameters of
the core and valent electron by means of the genealogical or Racah
coefficients [24 —26], and the ion—atom exchange interaction potential
has the form [18, 22]

I+1 e 1L
A(lep,lms, LM, S) = %9 +21 'n(GlLsS)2 l ; m m+u
le ! L
% A 2.18
poMp—p M ] o 219

where n is the number of identical valent electrons, GILSS is the
parentage or Racah coefficient [24—-26], the square brackets are the
Clebsh— Gordan coeflicients responsible for summation of electron
and ion orbital momenta into the atomic orbital momentum, and
Ay, is the exchange interaction potential for one valent electron
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which is located in the field of the structureless cores. Note a weak
dependence of the molecular ion energies on the total spin I of the
molecular ion. Indeed the level splitting corresponding to different
total spins of the molecular ion is determined by exchange of two
electrons and varies at large separations R as exp(—2yR). There-
fore formula (2.18) contains the average spin of the molecular ion.
Next, since the exchange interaction potential A; , decreases with
increasing p as R™*, we are restricted in formula (2.18) by the term
with minimal value of p. As a result, in the case of a valent p-elect-
ron we have [18, 21 - 23]

A1p(R) =34y, A(R) = R_’y Ap (2.19)

where Ay is the exchange interaction potential for a valent s-elec-
tron with the same asymptotic radial wave function (2.13) that is
given by formula (2.14).

Formula (2.18) allows one to construct the matrix of the ex-
change interaction potential of an ion and atom with valent p-elec-
trons. Below we represent these matrices if the atom and ion are
located in the ground electron states. One can check the identity of
the transferring electron and a hole. For atoms of group III (one va-
lent p-electron) and atoms of group VIII (one valent p-hole) of the
periodic table of elements, when the ground states of the atom and
ion are 'S and 2P, respectively, the exchange interaction potential
of the interacting atom and ion according to formula (2.18) is given
by the matrix

Mp,=-1|M,=0| M, =+1
Aqq Aqp Aqq

A(M;) = (2.20a)

where M7y, is the orbital momentum projection for the atom (ele-
ments of group III) or ion (elements of group VIII). For elements of
groups IV and VII of the periodic table, when the ground electron
states of the atom and ion are 3P and 2P, respectively, the exchange
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interaction potential matrix according to formula (2.18) is

Mp=—-1|M,=0| M, =+1
5 [m=-1 Ay Ay A1o
A(m, Mp) = 3 m=0 A 2A11 Aqp
m=1 A1 Ay Ao
(2.20D)

where m, My, are the projections of the orbital ion and atom mo-
menta. For elements of groups V and VI of the periodic table with
the ground states of the atom and ion S and 2P, respectively, the
exchange interaction potential matrix has the form

m=-1|m=0 m=1|
Ay Ay Ay |

A(m) = g . (2.20¢)

We take as a quantization axis the direction in which the pro-
jection of the electron momentum is zero and we denote by 6 the
angle between the quantization and molecular axes. By definition,
the exchange interaction potential A(f) of an atom and its ion with
valent p-electrons is equal to

1 4
AB) = 5 Y |aho®)] A =5 X Win@. o) Au
M M

where d};,(6) is the Wigner function of rotation [27], and Y;(60)
is the spherical function. From this it follows that 4 |Yip(0)* is
the probability to find a state with the momentum projection M at
angles 6, ¢ with respect to the molecular axis. The spherical function
satisfies to the normalization condition

1
1
2 _
/1dC089|Y1M(9)| =

and —1 < cosf < 1. Hence we obtain the exchange interaction
potential of an atom and the parent ion in the case of groups III
and VIII of the periodic table of elements [18] in the form:

A(f) = Ajgcos® 0+ Ay sin 6. (2.21a)
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Matrix (2.20b) gives the ion—atom exchange interaction potential as
a function of the angles between the quantization and molecular axes
for elements of groups IV and VII of the periodic table [28]

Af) = g [Alo sin? @) sin? O + Ay (cos? 0, 4 cos? 92)] (2.21b)

where 601,60 are the angles between the molecular axis and the quan-
tization axis for the atom and ion correspondingly, with the result
that the electron momentum projection onto the quantization axis
is zero. In the case of groups IV and VII of the periodic table the
exchange interaction potential is similar to that for atoms of groups
IIT and VIII and has the form

A() = g (Avpcos? 0+ Ay sin? 0) . (2.21¢)

Though we are restricted by the ground states of an ion and
the parent atom, this is a general scheme of construction of the ion—
atom exchange interaction potential. Being averaged over the total
quasimolecule spin I, the exchange interaction potential depends on
the ion m and atom M} angular momentum projections onto the
molecular axis. This corresponds to the LS-coupling for atoms and
ions, i.e. we neglect the spin-orbital interaction. Hence, the above
expressions correspond to the following hierarchy of the interaction
potentials

Vex > U(R), A(R), (2.22)

where Vi is the typical exchange interaction potential for valent
electrons inside the atom or ion, U(R) is the long-range interaction
potential between the atom and ion at large separations R, A(R) is
the exchange interaction potential between the atom and ion. Within
the framework of the LS coupling scheme for atoms and ions, we
assume the excitation energies inside the electron shell to be relatively
large, and this criterion is fulfilled for light atoms and ions. In the
same manner one can construct the exchange interaction potential
matrix for excited states within a given electron shell.

Because the exchange interaction potential is determined by
the transition of one electron from a valent electron shell and since
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Table 1. The states of an ion and the parent atom
with valent p-electrons. A one-electron transition
is forbidden between these states, and the exchange
interaction potential of the ion and parent atom is

Zero.
Ion —electron confiquration | Atom — electron configuration
and state and state

p*('D) p*(*S)

p*('S) p*(*S)

p*('S) p*(*D)

p*(*S) p*('D)

p*('S) p'('S)

p*(*D) p*('S)

a transferring electron carries a certain momentum and spin, addi-
tional selection rules hold for one-electron interaction. In the case of
transition of a p-electron, the selection rules have the following form

IL-I|<1, |S—s|<1/2. (2.23)

These selection rules follow from the properties of the Clebsh— Gor-
dan coefficients in formula (2.18). If these conditions are violated then
the ion—atom exchange interaction potential is zero on the scale of
one-electron interaction potentials. Table 1 [28] lists the states of
atoms and their ions with valent p-electrons for which the ion—atom
one-electron exchange interaction potential is zero.

2.4. Jon-atom exchange interaction for heavy atoms

In the limit of interaction of atomic particles, if the relativistic
interactions dominate, the jj-coupling becomes valid for an individ-
ual atomic particle. Therefore the quantum numbers of an inter-
acting atom and ion include .J, the total electron momentum Mj,
its projection onto the molecular axis for the atom, and j,m;, the
same quantum numbers for the corresponding ion. At large separa-
tions these quantum numbers relate to the molecular ion consisting
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of the ion and the parent atom. We note that the total momentum J
and its projection onto a given direction M; are the quantum num-
bers of an individual atomic particle for both momentum couplings
(LS and jj) that simplifies the analysis in a general case. Next,
an accounting for relativistic effects reduces the atom symmetry. For
this reason the ion—atom exchange interaction potential is expressed
on the one hand through the one-electron exchange interaction po-
tential in a simpler way, and on the other hand, the prohibition on
some one-electron transitions becomes stronger in the presence of rel-
ativistic interactions because of a weaker mixing of states in this case.
Table 2 [28, 29] contains parameters of electron shells for the ground
electron states of atoms and ions having p electron shells. Note that
in the case of jj-coupling, the analogy in transitions of a p-electron
and a p-hole is lost because of a different sign of the spin-orbit in-
teraction potential for the electron and the hole. Hence the ion—
atom exchange interaction potential is different when the p-electron
shells of an atom and its ion are replaced by the shells consisting
of identical p-holes. Moreover, in the case of group VI elements of
the periodic table, the one-electron ion—atom exchange interaction
potential is zero if the atom and ion are found in the ground states.
Note that for all the groups of the periodical table of elements with
valent p-electrons, the ion—atom one-electron exchange interaction
potential is not zero for light atoms and their ions in the ground
states.

As follows from Table 2, the ion—atom exchange interaction
potential is simpler in the presence of relativistic interactions because
of a lower symmetry of the atomic particles in this case. In the case
of LS-coupling for individual atomic particles we were restricted to
the ground states of atomic particles because of a cumbrous problem,
but the presence of relativistic effects simplifies this problem. To il-
lustrate this fact, Table 3 gives the exchange interaction potential
matrix for group V elements. The notations of ion and atom electron
terms are indicated in Table 3 for LS- and jj-coupling. The values
of the exchange interaction potentials are given if the j;7 momen-
tum coupling holds true, and it is indicated in parentheses that this
potential is zero (0) or it is not zero (+) for the LS-coupling. In par-
ticular, for the ground atom and ion states the exchange interaction
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Table 2. The ground states of atoms with p-elec-
tron shells within the framework of LS- and jj-
couplings, and the ion—atom exchange interaction
potential (A) for the cases ¢ and e of the Hund

coupling.

Shell | J | LS-term jj-shell A
p |1/2] *Piys [1/2]" Ay
P’ 0 Py [1/2] Ay
P 3/2| 'Sy | [1/2[3/2]' | Asp
pt 2 3Py [1/2]4[3/23 | ©
p° | 3/2| 2Py | [1/2%[3/2P | Ay
F L0 S | 0/2PB/2 | B

potential occupies one cell in Table 3, while within the framework of
the LS-coupling it is given by the matrix of formula (2.20c).

Note that for jj coupling the p-electron shell of an atom or
ion is split into two independent subshells with j = 1/2 and j = 3/2.
Hence, the difference in the number of electrons on these subshells for
an interacting ion and atom can not exceed one. This is the criterion
of one-electron transition instead of (2.23) for LS-coupling. If this
criterion is not fulfilled, the one-electron ion—atom exchange inter-
action potential vanishes, and it is equal to Ay, or Az, depending
on the momentum of transferring electron (see Tables 2, 3).

We now focus on elements of groups III or VIII of the periodic
table when one transferring p-electron (or p-hole) is located in the
field of two structureless cores. If the spin-orbit splitting of electron
levels is large compared to electrostatic ion—atom interaction, the
quantum numbers of the molecular ion are jm; — the total electron
momentum and its projection onto the molecular axis. We have the
following relations between the exchange interaction potential Ay,
within the framework of jj-coupling for atoms and ions, and the
exchange interaction potentials Ay, for the LS-coupling:

L j 2
Ajmj:le— mj] Ay

m K
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Table 3. The exchange interaction potential for
atoms of group V of the periodic system of elements
with the atomic electron shell p? and their ions
with the electron shell p? [29].
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This relation follows from the relation between the electron wave
functions for these states and yields the exchange interaction poten-
tials Ajmj 5

2
§A11 y Dy = A10 +3 3 A11 .

Azjp3/0 = An1, (2.24)

1
Aoy = 3 A +

where m; = o + p according to the properties of the Clebsh - Gor-
dan coefficients. Here the values Ay and Ay are given by formu-
las (2.19).

By analogy with previous operations, if the molecular axis has
angle § with the quantization axis onto which the angular momentum
projection is zero, the exchange interaction potentials is:

Ay = A10 +3 Au,
(2.25)

Aza(0) = (% + %cos? 9) Ao + (% + %sin2 9) Ay .
3. Asymptotic theory of resonant charge
exchange process

3.1. Cross section of resonance charge exchange
with transition of s-electron

We now evaluate the cross section of the resonant charge ex-
change process (2.1) when an s-electron goes from one atomic core to
another. In this case we have on the basis of formulas (2.5) and (2.14)
for free motion of nuclei (R? = p? + v%t?)

i = | S =1 22 ai0)

2y
- f A2 P2 exp(— ) (3.1
and the cross section according to formula (2.5) is [17, 18]
Ores = /27rpdpsin2 Colp) = %Rg (3.2a)
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where
1 /@ _
Co(p) = o /% A2e_1/7R§/7 1/2 exp(—Ryy) = 0.28. (3.2b)

In particular the velocity dependence (2) follows from this formula if
the basic dependence ((Ry) is exponential.

In order to ascertain the accuracy of the asymptotic theory,
we consider charge exchange of a proton on a hydrogen atom at a
collision energy of 1 eV in the laboratory frame and analyze various
versions of the asymptotic theory. In this case formula (3.2) takes
the form

2
Ores = WTRO where ((Rg) = \[R:”/? exp(—1 — Ry) = 0.28.

(3.3a)
One can account for the next term in the expansion of the phase
((Rp) in the small parameter 1/Ry. Then formula (3.2) has the
form
WR%

Ores = 9

(3.3b)
where ((Ry) = \/ R?’/2 <1 + —> exp(—1 — Rg) = 0.28.
8Ry

One can evaluate the exchange phase ((p) using the exchange inter-
action potential A(R) directly from formula (2.5). This gives for the
charge exchange cross section

1
Ko(Rg) + — K1 (Rg)| = 0.28.

Ry
(3.3¢)
Finally, one can find the charge exchange cross section directly using
formula (2.5)

Ores = —5—, Where ((Rg) =

TR3 4R2 [
2

Ores = /27Tp dp sin® <(P) ’ (33d)
0

where the charge exchange phase is given by formulas (3.3a), (3.3b),
and (3.3c). The cross section in the hydrogen case at the collision
energy of 1 eV in the laboratory frame calculated using the above
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Table 4. The values of the parameter Ryy for
resonant charge exchange accompanied by transi-
tion of s-electron at energy 1 eV in the laboratory
frame.

Element | H | He [ Li | Be [ Na [ Mg | K | Ca | Cu |
Ryy [105[10.5]13.6 [12.7 | 14.9 [13.8[15.7 | 14.7 [ 14.3 |
Hg |
5

Element | Zn | Rb | Sr | Ag | Cd | Cs | Ba | Au
Ryy 14.0 |1 16.3 | 15.4 | 14.5 | 14.4 | 16.8 | 16.0 | 14.5 | 14.

formulas for values of the charge exchange cross section are in atomic
units 172, 175, 175, correspondingly, if we use formulas (3.3a), (3.3b),
and (3.3c), and 170, 173, 174 if we use formula (3.3d) with the above
expressions for the charge exchange phase. The statistical treatment
of this data gives [28] 173 £ 2 a.u. for the average cross section, i.e.
the error in this case, which can be considered as the best accuracy
of the asymptotic theory, is approximately 1%.

In reality, the accuracy of the asymptotic theory is determined
by the small parameter 1/(Ry7y), and the above accuracy is of the
order of 1/(Rgy)?. Table 4 gives the values of the parameter Ryy for
some cases of resonant charge exchange with s-electron transition at
a collision energy of 1 eV in the laboratory frame. The values of the
asymptotic coefficients A are taken from [18, 30, 31]. Clearly, the
best accuracy of the asymptotic theory is less than 1%.

The accuracy of the asymptotic coefficient A is limited, espe-
cially if it is obtained from electron wave functions which are given
as a sum of exponents [32, 33]. The error AA for this value affects
the accuracy of the cross section. From formula (3.2) the relative
accuracy of the cross section Ao is

Ao 4 AA

== —. 3.4
Ores Royy A ( )

Estimating the error in the asymptotic coefficient to be AA/A =
10% , we obtain the error in the cross section 3—4% at a collision en-
ergy of 1 eV for the cases of Table 4 in accordance with formula (3.4).
Thus the accuracy of the asymptotic coefficients is important for the
asymptotic theory of the resonant charge exchange cross section, the
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real accuracy of which with the transferring s-electron lies between
1% and 5% at small collision energies.

According to Fig. 2, the contribution of the internal atomic
regions to the overlapping integral is of order of 1/R?. Therefore,
representing the charge exchange cross section as an expansion in se-
ries of the small parameter 1/R, one can retain only two first terms
of this expansion, the accounting for next terms being incorrect. For-
mula (3.2) takes into account two terms such an expansion. Hence
this asymptotic theory is valid to a certain accuracy that can not be
improved within the framework of the information used.

Note that the cross section of the resonant charge exchange
process depends weakly on the collision velocity in accordance with
formula (2.2). This dependence follows from the exponential depen-
dence of the charge exchange phase (y(p) on the collision impact
parameter p (o(p) ~ exp(—7yp). In this case YRy = In(vg/v), and
we obtain

dlno 2
dlnv YRy

é
2
, or o(v)=o(vg) - (1;—0> , 0= — (3.5)
and since YRy > 1, we have § < 1.

3.2. Cross section of resonant charge exchange
with p-electron transition

The asymptotic theory is simple for transition of an s-electron
when the exchange phase ((p) is given by formula (3.1). The res-
onant charge exchange cross section is determined by formula (3.2)
which accounts for two leading terms in a series of expansion over a
small parameter of the asymptotic theory. When a valent p-electron
transfers from one atomic core to another during the collision, the
processes of charge exchange and electron momentum rotation are
entangled. One can partially separate these processes because charge
exchange proceeds in a narrow range of separations where the molec-
ular axis turns by a small angle of the order of 1/y/Rg7y. Indeed,
a range of distances between nuclei AR, where the charge exchange
phase ( varies remarkably, is AR ~ 1/, and this corresponds to the
rotation angle ¥ ~ vt/R ~ 1/y/Ry < 1. Therefore, one can neglect
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the depolarization process in the course of the electron transition, but
this decreases the accuracy of the asymptotic theory. Below we con-
sider the transition of a p-electron in the resonant charge exchange
process.

Separating in this way the depolarization of the colliding atom
and ion from the charge exchange process, we average the cross
section over directions of the molecular axis with respect to the quan-
tization axis. Considering transition of a p-electron, we introduce an
angle 6 between the quantization axis for the electron momenta and
the molecular axis of the colliding atom and ion. This value varies
during the collision due to the molecular axis rotation. We denote
by ¢ this angle at the distance of closest approach of the colliding
particles, and the average resonant charge exchange cross section &
is equal to

1
1
Ores = 5/0(’!9)(1(308’!9, (3.6)
1

where o(¥) is the charge cross section exchange at angle ¢ between
the collision impact parameter and the quantization axis. Figure 3
shows the geometry of collision in the center-of-mass frame, when
the configuration of the colliding particles is close to that at closest
approach. The following expression relates to a current angle 6 be-
tween the molecular and quantization axes and an angle ¥ between
these axes at closest approach

cos ) = cos ¥ cos o + sin¥ sina cos ¢,

where a, ¢ are the polar angles of the molecular axis, so that sina =
vt/R, and v is the collision velocity, ¢ is time, and R is the distance
between the colliding particles.

A small parameter of the theory 1/py simplifies determination
of the phase and cross section of this process. Formulas (2.21) give
the expressions for the exchange interaction potentials of atoms and
their ions with filled p-shells in neglecting the spin-orbit interaction.
These expressions with accounting for the above relation between
angles for molecular and quantization axes can be considered as an
expansion of the exchange interaction potentials in power series of
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Fig. 3. Geometry of the collision process in the
center-of-mass frame 1 — quantization axis; 2 —
molecular axis at the distance of the closest ap-
proach; 8 — current molecular axis; 4 — trajectory
of motion; 6,9 are the angles between the quanti-
zation and molecular axes for the current configu-
ration of the colliding particles and at the distance
of the closest approach, «, ¢ are polar angles of
the current molecular axis with respect the one at
the distance of the closest approach.

a small parameter 1/py. As a result, the charge exchange phase in
the case of atoms of groups I1I, V, VI, and VIII of the periodic table
of elements is

C(p, D, ) = C(p,0) |cos? 9 — L cos® 9 + L sin? (2 + cos? w)] .
Yp Yp (3.7)

This expression relates to large collision impact parameters, and
¢(p,0) is the phase of the charge exchange process when a quan-
tization axis has the same direction as the molecular axis at the
distance of the closest approach. The value ((p,0) can be ex-
pressed through the charge exchange phase (y which is given by
formula (3.1) and relates to s-electron transition with the same
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asymptotic parameters v, A. This relationship for the resonant char-
ge exchange process involving atoms of groups III and VIII of the
periodic table has the form

((p,0) = 3¢o(p) , (3.8a)

and for atoms of groups V and VI this relation is

¢(p,0) =7C(p) - (3.8b)

Note that our analysis is valid for the ground state of the colliding
atom and ion.

In the case of atoms of groups IV and VII of the periodic table
the expression for the charge exchange phase at large impact collision
parameters has the form

1
C(p,9,0) = 5Co(p) {sin2 ¥ sin® 99 + 7—p[2 cos® 9,

+ 208?99 + sin® 91 cos?® 9y + cos? ¥ sin? 9y
— sin® 9 sin? 192((:082 @1 + cos? ©v2)

+ sin 2991 sin 2495 cos 1 cos gog]} , (3.9)

where 91, 1 and 99, p9 are the polar angles of the quantization axes
of the atom and ion correspondingly with respect to the molecular
axis at the distance of the closest approach.

We use formula (2.6) for the resonant charge exchange cross
section at ¥ = 0 and take into account that the angular dependence
of the cross section is logarithmic according to formula (2.2), so that
the average cross section of this process is close to that at zero angle.
Hence, the average cross section can be determined as an expansion
in power series of a small parameter of the theory. Indeed, since
the basic dependence of the exchange phase ((p,,¢) on a collision
impact parameter p is exponential, {(p,d) ~ exp(—7yp), we have in
the case of atoms of groups III, V, VI, VIII of the periodic table

C(p, 9, 9) .

1
Ro (9, ¢) = Ro(0) + 5 In (5. 0)

(3.10)
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We consider atoms and ions in the ground states, including the
S -state, so that the angles 9, ¢ characterize the quantization axis
direction for an atomic particle with nonzero momentum. Then for-
mula (3.6) yields the average resonant charge exchange cross section

1 27 2
// [RO(O)-i—%InM dcosd dp. (3.11)
0 0

Ores =

e

((Ro,0)

In fact, formula (3.11) implies that the dependence of the ex-
change phase ¢ on a collision impact parameter p has the form
¢ ~ exp(—vyp). This formula provides the basis for determination
of the average resonant charge exchange cross section process when
this process results from transition of a p-electron. This formula is
valid for elements of groups 111, V, VI, VIII of the periodic table when
atoms and ions are in the ground states, and one of these states is
the S-state, such that the charge exchange phase depends on two
angles 9, . In the same manner one can find the charge exchange
phase for elements of groups IV and VII which depend on four angles
U1, 01,92, 2.

Let us compare the resonant charge cross sections exchange
for transition of s and p valent electrons when these electrons are
characterized by the same asymptotic parameters v and A. Assum-
ing exponential dependence of the charge exchange phase ((p,?, )
on the collision impact parameter p, ((p, ¥, @) ~ exp(—vp), and ne-
glecting the momentum rotation during the electron transition, we
obtain the average cross section &g 0f the resonant charge exchange
process

1 2 9
Ores = UO/ dCOS'ﬂ/d—(p <1 + ! In C(p,ﬁ, (,0)) . (3.12)
, / 27 YR Co(p)

Here o is the resonant charge exchange cross section for a transfer-
ring s-electron with the same asymptotic parameters, Ry = \/20¢ /7,
and (g(p) is the charge exchange phase for s-electron which is given
by formula (3.1). Additional assumptions for evaluation of the charge
exchange cross sections with a transferring p-electron decrease the
accuracy of the asymptotic theory in this case.
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Note that the above consideration pertains to the ground sta-
tes of a colliding atom and ion. In the case of atoms and ions with
valent p-electrons the cross section can vary significantly for different
states. For example, for the process

Ot(*S)+0 = 0+ 0(*9)

where the ion is found in the ground state, the cross section is zero for
excited 2D and 28 atomic states of this p? valent shell. Because the
statistical weight of the atom in the ground state is 3/5 with respect
to the total number of atomic states of this electron shell, the cross
section of the process under consideration depends significantly on
the method of preparing atoms and ions.

Table 5 contains the reduced cross sections depending on the
parameter Ry7y. The value X3 of Table 2 is /0y for elements of
groups IIT and VIII of the periodic table, the value ¥4 is 6/0¢ for
elements of groups IV and VII of the periodic table, and the value
Y5 is /o¢ for elements of groups V and VI of the periodic table. In
addition, this Table contains the reduced cross sections Y19 and Xq;
that correspond to the projections 0 and 1 of the orbital momentum
onto the impact parameter direction corresponding to the case of one
valence p-electron, i.e. for elements of groups III and VIII of the
periodic table. The value ¥ in Table 5 is ¥ = ¥10/3 + 2%11/3, and
its comparison with the average cross section testifies the sensitivity
of the cross section to different methods of averaging.

3.3. Resonant charge exchange for different cases
of Hund coupling

In considering the resonant charge exchange as a process of
slow collisions of atomic particles, we use the fact that the quantum
numbers which describe this process depend on the character of mo-
mentum coupling for colliding atomic particles. In turn, this depends
on energetic parameters of different degrees of freedom for colliding
particles. Following the classical scheme [35, 36], we describe var-
ious relations between these energetic parameters as different cases
of momentum coupling in the diatomic molecules as given in Ta-
ble 6 [35, 34]. These are called the cases of Hund coupling and include
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Table 5. Reduced cross sections of resonant
charge exchange [29].

Roy| 6 | 8 |10] 12] 14 ] 16
Yo | 140 1.29 | 1.23 | 1.19 [ 1.16 | 1.14
Sy; |1.08 [0.98]0.94]0.92]0.91 ] 0.91
> |1.19]1.08]1.04]1.01]0.99|0.95
Sy [ 1.7 1.09 | 1.05 [ 1.03 | 1.02 | 1.01
w4 [1.16 | 1.08 | 1.04 [ 1.02 | 1.01 | 1.00
¥, | 150 [1.32 123 ] 118 | 1.14 | 1.12
S5 [ 144 129122 117|114 ] 111
S/ | 1.18 | 1.10 | 1.07 | 1.05 | 1.04 | 1.03
Sg/o | 118 [ 1.10 | 1.06 | 1.04 [ 1.03 | 1.02
5 | 116 [ 109 1.06 | 1.04 | 1.03 | 1.02

different relations between energetic parameters of the colliding parti-
cles. The important energetic parameter of the quasimolecule consist-
ing of colliding particles is the interaction potential V, between the
orbital angular momentum of electrons and the molecular axis. This
includes the exchange interaction potential Ve inside the atom and
ion due to the Pauli exclusion principle, the splitting of molecular ion
levels due to long-range interaction U(R) and exchange interaction
A(R) between the ion and atom. Within the framework of the Hund
schemes, we compare this interaction potential with the relativistic
interaction d¢ which is the sum of spin-orbit interactions of individual
electrons and other relativistic interactions and the rotational energy
Vi = vp/R? for free motion of colliding particles. In the case of collid-
ing atomic particles, in contrast to that of a molecule, different types
of Hund coupling can be realized in one classical trajectory of par-
ticles. We use a general Nikitin’s scheme [23, 36 —38] that connects
the character of momentum coupling for colliding atomic particles
in motion along one trajectory. The problem under consideration is
simpler because the behavior of colliding particles is of interest on
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Table 6. The cases of Hund coupling.

Hund coupling case Relation
a Ve o>V
b Ve > Vi > 6
c ok >Ve>Vp

Vi> Ve
Vi o>V,
e >Ve>V,

the trajectory element where the electron transition proceeds. Only
one type of the momentum coupling is realized on this part of the
trajectory.

Above we considered the cases where relativistic interactions
were negligible and orbital electron momentum projection onto the
molecular or motionless axis was conserved during electron transition

v

corresponding to cases a and b of Hund coupling which were realized
for light atomic particles. It is of interest to compare these results
with those for the case d of Hund coupling which is given in Table 5
for elements of groups III and VIII of the periodic table. This cross
section is denoted by Eg. Though the case d which corresponds to a
motionless axis is not realized, the comparison shows that the cross
sections are close in three cases a, b and d of Hund coupling.

We now consider the resonant charge exchange process within
the framework of the case ¢ of Hund coupling when

0 > Vex > V; (3.13)

according to the data of Table 6. This criterion leads to the jj-
coupling in the atom and ion, which in turn corresponds to transi-
tion of one electron with a given total momentum j during resonant
charge exchange. Below we analyze the character of resonant charge
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transfer for atoms and ions with valent p-electrons. In the case ¢
of Hund coupling and transition of a p-electron or a p-hole between
two completed cores, we have only one electron term, if the electron
momentum is 1/2. The exchange interaction potential for this fine
state of the atom or ion is given by formula (2.25), and this leads to
the following exchange phase

oo ) = Golo) (14 ) (314)
Py

where (y(p) is the charge exchange phase defined according to for-
mula (3.1), so that 3(p(p) is the charge exchange phase for zero
projection of the electron momentum onto the collision impact pa-
rameter in the case a of Hund coupling. In the case where the total
electron momentum is 3/2 the exchange phase within the framework
of the case ¢ of Hund coupling follows from formulas (2.25)

G/2(p,9) = Co(p) E + %COSQﬂ

+ % (% + g sin? ¢ + ;sim2 ¥ cos? 90)] . (3.15)
Here (y(p) is the charge exchange phase for the transition of an
s-electron with the same asymptotic parameters A,~ which is de-
fined according to formula (2.4), and ¥, ¢ are the polar angles of the
impact parameter direction with respect to the quantization axis.
Table 2 contains the reduced cross sections X; = Gj/o,, where the
average cross section o for a given total momentum is determined
by formula (2.13). The difference between average cross sections for
different total momenta is small in comparison with the accuracy of
determination of the cross sections and is negligible. One can deter-
mine the cross sections for the case e of Hund coupling when due to
a large rotational energy the momentum projection conserves onto
the motionless axis for the state with j = 3/2, and X Jo in Table 2
is the reduced cross section of the resonant charge exchange for the
state with 7 = 3/2 in the case e of Hund coupling. According to
Table 2, the relation between the molecular and motionless axis has
minor effect on the cross section of this process.
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Rotation of the molecular axis introduces a small contribution
to the cross section of resonant charge exchange; the difference be-
tween cases a, b and d of Hund coupling, as well as for cases ¢ and e
is not essential for this process. According to Table 2, the difference
of the cross sections for cases a and ¢ of Hund coupling is not sig-
nificant for atoms of groups III and VIII of the periodical table of
elements, and it is essential for atoms of groups IV, V, VI, and VII.
Transition between these coupling cases results from competition be-
tween the splitting U(R) due to a long-range ion—atom interaction,
the splitting A(R) due to the exchange interaction and the fine level
splitting d¢. Tables 5, 6 contain these values for atoms of groups II1
and VIII of the periodic table of elements.

The long-range splitting of levels depends on the atom and ion
states. If atoms and ions are found in the ground states, the long-
range splitting U(R) of atomic levels for elements of groups III, IV,
VI, VII of the periodic table results from interaction of the ion charge
with the atom quadrupole moment and is given by

,,,2
U(R) = 56<R3> , (3.162)

where R is the distance between interacting particles and (r?) is the
mean square of the valent electron orbit in the atom. The long-range
splitting of ion levels for elements of group IV, when the quadrupole
momenta of the atom and ion is non-zero, is determined by interaction
of quadrupole momenta, and the ion—atom long-range interaction
potential U(R) in this case is

U(R) = Q];% : (3.16b)

where Q;, Q, are the quadrupole momenta of the atom and ion, re-
spectively, which is 2 <r2> /5 for states with zero orbital momentum
projection and F4(r?) /5 for the states in which the orbital momen-
tum projection onto the motionless axis is equal to 1. Expression
(3.8b) relates to elements of groups IV and VII of the periodic table
when the quadrupole moment of atoms and ions is non-zero. Next,
the splitting of ion levels for elements of groups V and VIII, whose
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atoms have zero quadrupole moment, is given by

_ 12a((r?))?
U(R) = —orRS (3.16¢)
where « is the atom polarizability. The value Ac/d in Tables 7
and 8 characterizes an error in the cross section due to the use of
the exponential dependence for the exchange phase ((p) ~ exp(—~p)
only, as has been done in Table 5.

Tables 7 and 8 demonstrate the role of different interactions for
the resonant charge exchange process involving real ions and atoms.
These Tables imply that a long-range splitting of molecular terms is
important for elements of groups three and is negligible compared to
the exchange interaction potential for molecular ions of rare gases. In
addition, Table 8 contains the average cross sections of the resonant
charge exchange processes for elements with valent p-electrons.

Let us consider the charge exchange process of rare gas atoms
and ions if ions are initially found in the ground state (j = 3/2).
Then at small collision velocities only the ground ion state partici-
pates in this process and the transition into the ion state j = 1/2
is forbidden. At high collision velocities this channel opens up and
the resonant charge exchange process corresponds to the case a of
Hund coupling. Let us assume that these coupling schemes lead to
an identical cross section so that a variation of the cross section in
the course of transition between the cases ¢ and a of Hund coupling
is due to different atom ionization potentials with the formation of
different fine ion states. The jump in the cross section due to this

effect is

1AT
A&res — §T5res ) (317)

where the first factor is the probability of the ion state j = 1/2, the
second factor accounts for dependence (2.2) of the cross section on
the electron binding energy, and Al[ is the difference in the ionization
potentials for states with different total momenta that corresponds to
the fine splitting of ion levels. According to this formula, the relative
variation of the cross section is about 0.4% for Ar, about 2% for Kr,
and about 4% for Xe. This effect was first observed experimentally
in [40]. Collision velocity v for this transition can be estimated from
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Table 7. Parameters of the resonant charge ex-
change process for collisions of atoms of group III
of the periodic table with their ions at energy 1 eV
in the laboratory frame.

B | Al |Ga| In Tl
5,107%cm? | 1.1 | 1.8 | 20 | 2.2 | 2.0
vRy 12 | 14 | 14 | 15 14
Ao/, % | 07]05]|04| 03 | 04
8¢, cm ™! 15 | 112 | 826 | 2213 | 7793
U(Ry), ecm™" | 360 | 350 | 320 | 330 | 390
A(Rg),em™! | 11 | 5 3|1 25 2

Table 8. Parameters of the resonant charge ex-
change process for collisions of atoms of group VIII
of the periodical table with their ions at energy
1 eV in the laboratory frame.

Ne | Ar Kr Xe
7, 107 cm? 3.3 | 5.8 7.5 9.8
YRy 11 12 13 14
Ac/a, % 0.8 | 0.5 0.4 0.3

¢, cm ™! 780 | 1432 | 5370 | 10537
U(Ry), 103 cm™! | 5 4 2 2
A(Rp), cm™! 13 8 5 3

the expression for the typical time of the process

1 [R
T~y 22~ AL (3.18)
v\ oy

As follows from this formula, the typical collisional energy for the
transition between cases ¢ and ¢ of Hund coupling for the resonant
charge exchange process is estimated to be ~ 10 eV for Ar, ~ 100 eV
for Kr, and ~ 600 eV for Xe. At low energies the case ¢ of Hund
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coupling is realized, i.e. the total electron momentum is the quantum
number of this process.

In addition, the transitions between states with different total
momenta are adiabatically forbidden at low energies and hence are
practically absent, i.e. the ionic fine state does not change during
collisions with atoms. The ratio of the cross sections o03/9,01/2 of
the resonant charge exchange for the total electron momenta 3/2
and 1/2 of ions is equal approximately to

ATEIOELTL)
o3/ Tijp’

where I39,11/5 are the atom ionization potentials with the forma-
tion of the ion states with the total electron momenta 3/2 and 1/2
correspondingly. The relative difference between the cross sections of
electron transfer for different fine states of ions is approximately 1%,
5% and 11% for argon, krypton and xenon, respectively.

3.4. Average cross sections of resonant charge exchange

Summarizing the above results, we conclude that the asymp-
totic theory is valid if colliding atoms and ions are found in the ground
states or lower excited states. The asymptotic theory provides an ac-
curacy of 1-5% [28] for s-electron transitions at eV collision energies.
In the case of p-electron transitions the asymptotic theory leads to
an accuracy of better than 10% for the cross sections of resonant
charge exchange averaged over the momentum directions. Table 9
lists the parameters for average cross sections of resonant charge ex-
change with p-electron transitions [29]. In this case the dependence
of the cross section on the collision velocity is given by formula (2.2)
which can be rewritten in the form

o(v) v\ ? dlno 1
prg —_ h (5 = — = .
o(vo) ( v > ) Where dlnv 2Ry

Table 9 gives the parameters of this formula at a collision energy of
1 eV in the laboratory frame.

Figures 4 and 5 present the average cross sections of the reso-
nant charge exchange process in slow collisions for all elements of the
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Table 9. Parameters of the average cross section
of resonant charge exchange for elements with va-
lent p-electrons of atoms and ions at a collision
energy of 1 eV [29].

Element B C N O F Ne Al

o, 10715 cm? 11 | 86 | 62 | 6.6 | 49 | 3.3 | 19
a=—dlno/dlnv | 0.16 | 0.16 | 0.16 | 0.16 | 0.17 | 0.18 | 0.15
Element Si P S Cl | Ar | Ga | Ge

o, 10715 cm? 15 11 10 | 8.0 | 5.8 | 20 18
a=—dlno/dlnv | 0.14 | 0.14 | 0.15 | 0.15 | 0.16 | 0.14 | 0.13

Element As Se Br Kr In Sn Sb

0,107 P em? 13 | 13 | 10 |75 ] 22 | 19 | 17
a=—dlno/dlnv | 0.14 | 0.14 | 0.13 | 0.15 | 0.14 | 0.13 | 0.13

Element Te I Xe Tl Pb Bi

o, 10715 cm? 16 | 13 | 10 | 21 | 20 | 22
a=—dlno/dlnv | 0.13 | 0.13 | 0.14 | 0.14 | 0.13 | 0.12

periodic table [28, 39]. In addition, as an illustration of the asymp-
totic theory, we plot in Fig. 6 experimental data for this process with
the participation of krypton atom and ion. Note that the accuracy
of the asymptotic theory for the cross sections of resonant charge ex-
change is better than measurement errors with the possible exception
of data obtained from the mobility of ions in parent gases. Therefore
we use experimental data for the analysis of the ion mobilities. The
data of Figs 4 and 5 provide the continuation [49 - 51] for tables of
the cross sections of this process for various elements. Note that in
contrast to other models [52 - 54], where the transferring electron is
modelled by an s-electron, we now account for coupling of momenta
in this process within the framework of the asymptotic theory repre-
senting the cross section as an expansion in power series of a small
parameter.
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3.5. Resonant charge exchange at ultralow energies

In considering the resonant charge exchange process, we as-
sumed linear trajectories of the colliding ion and atom. But at
low collisional energies the distortion of a linear trajectory is of im-
portance, and below we take this into account for the ion— atom
polarization interaction potential U(R) = —ae?/(2R*) at large sepa-
rations R (« is the atom polarizability, and e is the electron charge).
In the low collisional velocity limit, the resonant charge exchange
cross section is one half of the capture cross section as a result of
ion—atom collision [55]

1 [ ove?
Ores(V) = §Ucap(v) =7 5 (3.19)

where ¢ = pv?/2 is the energy of colliding particles in the center-
of-mass reference frame, such that v is the collision velocity, p is
the ion—atom reduced mass. Indeed, the resonant charge exchange
proceeds after ion—atom approach as a result of their capture and
the probability of electron transfer is one half on average.

In the other limiting case we take into account a weak distor-
tion of the linear trajectory. Since the electron transition mostly pro-
ceeds at closest approach, in the expression for the transition proba-
bility it is necessary to replace the impact collision parameter p along
a linear trajectory by the distance of closest approach ry;, for the
distorted trajectory. The relation between these parameters for the
polarization interaction potential has the form [55]

2

2 9 ae
=7min | 1 . 3.20
p Tmin ( + 27‘;4nin5> ( )

From this we obtain for the resonant charge exchange cross section
at weak distortion of the trajectory

T o mae?

Ores = o R

- 21
2 0+4R§6’ (3.21)

where 7R3 /2 is the resonant charge exchange cross section in the case
of linear trajectories, and the parameter Ry is given by formula (3.2)
for non-degenerate ground states of colliding ion and atom.
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. . Grou
Period p 1 11 111 v \%
15251/2 1s? 150
1 1.008 4.003
6.12| 3.4
1 4.82| 2.7 oHe
Hydrogen 3.65| 2.1 Helium
2528 /5 252 18| 2p 2Py 2p? 8Pg 2p3 4555
2 6.491 9.012 10.81 12.011 14.007
Li 26 Be 13] 14 9.9 7.7
3 22| 4 10| 12 5B 33 «Cl {1 N
Lithium 18| Berillium 8.3| 9.0 Boron | 6.6 Carbon | 5.2 Nitrogen
3528 /5 352150 | 3p 2Py 3p2 3P, 3p 3P,
3 22.990 24.805 26.982 28.086 30.974
31 18| 14 17 il 14
11Na % 12Mg 15| 19 13A1 14 14Sl 12 15P
Sodium 21| Magnesium 12| 9.0Aluminium/| 12 Silicon| 10 Phosphorus
15281 /5 452180 |  3d4s® 2Dy 3d%4s2 3Fy | 3d%4s2%Fy)y
39.098 40.08 44.956 47.88 50.942
40 25 24 1 22 23
19K 34 roa o1 21 Sc 20 22T1 1o 23V 1o
4 Potassium 28| Calcium 17| Scandium 16| Titanium 15| Vanadium 16
10 4.2
3d'74s%81 /5 | 44213, 4p2 2P1/2 4p2 3P, 4p3 453/2
63.546 6%38 fam 7(2;59 74122
15 26 20 15
19
16 20Cu|, 304m5, ml=a)ll e 33AS8
13 Copper 10 Zinc| 18 Gallium | 14Germanium| 11 Vanadium
55281 9 552 180| 4d5s? 2Dy )y 4d®5s2 8Fy |  4d*5s%Dy )y
85.468 87.62 88.906 91.22 92.906
45 29 25 23 23
37Rb 35| 38 Sr 25 39Y 51| 40 Zr 20 41Nb o
5 Rubidium 32| Strontium 20| Yttrium 18| Zirconium 16| Niobium 16
4405528, /5 | 55 1S 5p? 2Py /o 5p2 3Pg 5p® 483/
107.87 112.41 114.82 118.69 121.75
20 16 28 22 20
7 wAglly wsCdf wInii 5SniR 5iSb
14 Silver| 11 Cadmium/| 20 Indium| 15 Tin| 14 Antinomy
652815 652 180| 5d6s® 2Dy 5d%6s23Fy | 5d%6s% *Fy
132.90 137.38 138.90 178.49 180.95
51 35 32 22 20
55CS " 56Ba 30 57La o7 72Hf 1s 73Ta 17
6 Cesium 36| Barium 25| Lanthanum 23| Hafnium 15| Tantalium 14
5d106s28; 5 | 5d10s% 15 6p> 2Py /5 6p2 3Py 6p® 33/
196.97 200.59 204.38 207.2 208.98
16 14 26 22 26 1
14 79A11 12 80Hg 2 81T1 1o 82Pb 2 33Bl
11 Gold | 10 Mercury | 18 Thallium| 16 Lead| 19 Bismuth
75281 /9 752 180| 6d7s? 2Dy
7 [223] 226.02 227.08
E‘r 53 35 33
87 15 ggRa 30 89AC 28
Francium 38| Radium 25| Actinium 24

Fig. 4. Resonant charge exchange cross sections
for basic elements of the periodic table [28, 39].
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Resonant charge exchange cross sections
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Shell of valent electrons

Group Atomic Electron term
VI VII VIII weight
Period =
2p2 3P, 2p° 2P 2p8 15, Symbol
9 15.999 18.998 20.179| Atomic
8.3 5.7 4.1
6.9 sO a7 oF| 35 10Ne| number
5.6 Oxygen| 3.7 Fluorine| 2.6 Neon | Element—
43 52 61
3p~ "P2 3p P3/2 2p” " So Cross section of resonant
3 32.06 35.453 39.948 charge exchange (in
13 1GS 9.6 1701 7.0 18AI' 10-15 ¢m? at 0.1, 1,
10 8.0 . 5.8 10 eV in laboratory frame)
8.6 Sulfur| 6.6 Chlorine| 4.7 Argon
3d%4s TS| 3d%4s? 635, 3d%4s? 5Dy | 3d74s2*Fy 3d%4s2 3F,
51.996 54.938 55.847 58.993 58.69
23 20 19 19 1 20
24CI' 1o 25Mn 17 26Fe 16 2700 16 23Nl 17
4 Chromium 16| Manganese 14| Iron 13| Cobalt 13| Nickel 14
4p* 3P, 4p® 2P3/2 4p8 1S,
78.96 79.94 83.80
16 12 9.0
1 saSe| T xBri9 3Kr
12 Selenium| 8.2 Bromine| 6.2 Krypton
4d%5s TS| 4d®55% 655y 4d75s%F5 | 4d855% *Fg 4d101g,
95.94 [98] 101.07 102.91 106.42
22 21 21 20 18
42MO 19 43TC 1s 44R11 1s 45Rh 7 46Pd 16
5 Molibdenuml 5| Technetium 14| Ruthenium 14| Rhodium 14| Palladium 13
5p* 3Py 5p° 2P3 /9 5p° 1S
127.60 126.90 131.29
18 14 12
16 52Te 12 531 10 54X€
13 Tellurium| 10 Iodium| 8.6 Xenon
5d%6s? ®Dg | 5d%6s? 035, 5d%6s2 °Dy| 5d765% *Fg s 5d%6s3 3D3
183.85 186.21 190.2 192.22 195.08
‘N? 20 20 18 17 17
74 | sRe 1 0s 3 orlr | Pt
6 Tungsten 14| Rhenium 14| Osmium 13| Iridium 12| Platinum 12
6p* 3Py 6p° 2P3 5 6p° 13,
[209] [210] [222]
17 18 15
15 84PO 15 85A.t 13 86Rn
12 Polonium| 13  Astatine| 11 Radon
Actinides
642752 3F, | 51264752 4K /o 5636d7s2 6Lg | 51464752 0Ly /p 51672 TR, 56775285, 5
282.04 231.04 238.03 237.05 [244] [243]
28 30 28 46 38 49
90Th 24| 91 Pa o5 92U 24 gng 30 s Pu 32 95 Am 42
Thorium 20| Protactinium 21| Uranium 20| Neptunium 33| Plutonium 27| Americium 36
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.
Lantanides
415d6s2 1 Gy 413652 514 art6s2 514 465652 OHg
140.12 140.91 144.24 [145]

Ce 32| 5o Pr 32| oNd 32 82
58 32| 59 2| 60 2l Pm 22
Cerium 23| Praseodymium 23| Neodymium 23| Promethium 22

419652 T 467652 8Fy /o 4675d652 9Dy
150.36 151.96 157.25

Sm 31 31 Gd 28
62 26 egEu 5 64 o1
Samarium 22| Europium 22| Gadolinium 20

9526
419652 OH, 5/
158.92
65Tb zg

Terbium 21

4£10652 514

162.50
D 20
66 y 25
Dysprosium 20

114,25
aflles? S1yp o
164.93

Ho 29
67 o4
Holmium 20

4f12652 3Hg
167.26

Er 28
68 24
Erbium 20

13,2 2
4f136s2 2Py o
168.93

afld6s2 15,
175.04

afl45d6s% 2Dg /o
174.97

Tm 28l 70Yb 27| -, Lu 34
69 53| 70 23| 71 29
Thulium 19| Ytterbium 19| Lutetium 24

Shell of valent electrons
Atomic

weigh\t

Electron term

Cross section of resonant

o 2
Symbol——— charge exchange (in
Atomic //@ 28 L7 1071% ecm 2 at 0.1, 1,
23 10 eV in laboratory frame)
number y
I

Element

Fig. 5. Resonant charge exchange cross sections
for lanthanides [28].

Above we assumed the electron transfer to proceed at the dis-
tance of closest approach and the resonant charge exchange cross sec-
tion to be independent of the collision velocity. Along with changing
the collision impact parameter by the distance of closest approach in
the expression in the transition probability, it is necessary to replace
the collision velocity v at large separations by the velocity vmin at
the distance of closest approach [55]
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9 T I 1 S O B W A T
0.1 04 1 4 10 40 100 400 1000

Fig. 6. The resonant charge exchange cross sec-
tions for krypton [39]. 1 — formulas (3. Sa) (3.11),
experiment: 2 — [41] 3—[42], 4 —[43], 5 —[44],
6 —[45], 7—[46], 8 —[47], 9 —[48].

This gives [56]

0162

0
4 R3(vmin)e
Since the cross section change due to distortion of collision trajec-
tories is small in this limiting case and since the resonant charge
exchange cross section is almost independent of the collision velocity,
this velocity change is unimportant.

Sewing the limiting cases considered and accounting for weak
velocity dependence of the cross section, we obtain the resonant
charge exchange cross section in the form [56]

T
Ures(v) = iRg('Umin) + (322)

2 2
™ T e ae

p2y >

5 0T IR 7 3RD

Ores = > ) (3.23)

oe < oae

- 9 —.

2¢ ~ 2R}

Of course, the cross sections in the limiting cases coincide at the
sewing point. The distortion of the collision trajectory for the res-
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onant charge exchange process due to the polarization ion— atom
interaction leads to an increase in the cross section. In particular,
at the sewing point this increase is a factor of two. This effect also
changes the cross section velocity dependence.

4. Mobility of atomic ions in gases

4.1. The character of ion drift in atomic gas

When an atomic ion moves in an atomic gas in an external
electric field, it acquires an impetus from the electric field and returns
it to gas atoms as a result of collisions. These collisions give rise to
a friction force acting on the ion, so that the equation of motion for
a test ion has the form

dw Mw
M%—eF—T. (4.1)
Here M is the ion mass, e is the ion charge which is assumed to
be equal to the electron charge, w is the average ion velocity, F is
the electric field strength, and 7 is the typical time of ion— atom
collisions. The effect of collisions with atoms on the ion is then char-
acterized by the parameter 7 ~ 1/(Nyvo), where N, is the number
density of gas atoms, v is the typical ion—atom relative velocity, and
o is the typical cross section of ion—atom collisions responsible for
change of the ion momentum in collisions.

Equation (4.1) can be a basis for the balance equation of ions
in a gas subjected to an external electric field F. If the number den-
sity of ions is small compared to the number density of atoms, and
elastic collisions with atoms govern the character of the ion motion
in the gas, in the stationary case the balance equation is

eF="2 (4.2)

T
under the conditions considered, where w is the average ion velocity
and 7 is a typical time between successive collisions of the ion with
atoms. The left-hand side of this equation is the force on the ion from
the electric field, and the right-hand side is the frictional force arising
from collisions of the ion with the gas atoms. Below we shall derive
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the frictional force strictly, without using the tau approximation, but
directly from the Boltzmann kinetic equation for ions.
The Boltzmann kinetic equation for ions moving in an atomic
gas in an external electric field has the form
9f(v) of(v)

—8t +eF v :Icol(f)7 (43)

where f(v) is the velocity distribution function of ions, so that v
is a current ion velocity, I.o(f) is the collision integral of a test
ion with gas atoms. In the case of motion of an ion in an atomic
gas we neglect inelastic ion—atom collisions. In addition, because of
the small number density of ions we ignore ion —ion collisions and the
presence of ions in the gas does not affect the equilibrium distribution

function of ions. Therefore, the ion—atom collision integral takes the
form [57]

La(f) = [ [ 6)9() = F@)p(a)] | v = va | dodva,  (44)

where v, v/ are the ion velocity before and after the collision, v,, v}
are the atom velocities before and after the collision, do is the colli-
sion differential cross section which leads to this change of velocities
of the colliding particles, ¢(v,) is the Maxwell distribution function
of gas atoms.

Multiplying equation (4.3) with the collision integral (4.4) by
mv and integrating over dv yields

eFN; = /M(V’ —v)gdof(v)p(va) dvdv, . (4.5)

Here Nj is the number density of ions and g = v — v, is the rela-
tive velocity of the colliding particles conserved in the collision. We
employed the principle of detailed balance assuring the invariance of
the system evolution under time reversal (¢ — —t), yielding in this
case

/Vf(v)go(va)g dodvdv, = /V'f(v)go(va)ga dvdvy, .

Expressing the ion velocity v; in formula (4.5) in terms of the relative
ion—atom velocity g and introducing the center-of-mass velocity V
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by the relation

where m, is the atom mass, we find M (v, —v}) = u(g—g'), where

Mm,

= M,

is the reduced mass of colliding particles. The relative velocity af-
ter the collision can be written in the form g’ = gcos? +kgsind,
where 9 is the scattering angle, and k is the unit vector perpen-
dicular to g. Because of the random distribution of k in the plane
directed perpendicular to g, the integration over scattering angles
gives [(g—g')do = go*(g), where o*(g9) = [(1 — cos?) do is the
diffusion cross section of ion-atom scattering. Thus the relation (4.5)
takes the form [58, 59]

PN = [ 1g90" (9 (v)p(va) dvdv, (4.6)

with the Maxwell distribution function of atoms on velocities

my \ 3/2 mav2
¢(va) = Na (ﬁ) €Xp (‘ oT ) . (4.7)

Relation (4.6) can serve as a basis for evaluation of the ion drift
velocity. In the simplest Maxwell case o*(g) ~ 1/g, the right-hand
side of this relation gives

[ 81 )pv)dvdv, = (w — wi) NN,

where w, w, are the average velocities of ions and atoms, correspond-
ingly. Note that the distribution functions of ions f(v) and atoms
©(v,) are normalized by the conditions

/f(v)dv =N, /(p(va) dv, = N,

where Nj, N, are the number densities of ions and atoms, respec-
tively. In the case where the diffusion cross section 0*(g) is inversely



Asymptotic theory of charge exchange 253

proportional to the relative collision velocity g, the drift velocity of
ions w in a motionless gas (w, = 0) yields
eF
== = N, go*(q). 4.8
W= =N (o) (4.8)
The integral relation is useful for determination of the drift ve-
locity of a heavy ion which is moving in a gas in an external electric
field [60]. In this limiting case M > m, the ions have a narrow veloc-
ity distribution function compared to the atom distribution function,
and we represent it in the form

F¥) = Ny —w), w = - [vitd (4.9)

Hence, the relative ion—-atom velocity is g = w — v, . Substituting
this into relation (4.6) and integrating over angles, we obtain [60]

eF 1 /2T maw? 70 mag2
= —5 — X — €ex —
maNa w2\ my P\ T Tor / P\ or

2 _x MaWg mawg . . MaWg
X g0 (g)dg( T cosh T sinh — >(4.10)

If the ion drift velocity w is small compared to the thermal atom
velocity /T /my, this formula gives for the ion drift velocity

<£>5/2 3y/meF

bl

| [ exp (~m58) g0+ (9)dg i)
dla
2T
w K
ma
In the other limiting case we have from formula (4.10)
eF 9 2T
maNa =w o (w), w > m—a. (411b)

Along with the integral relation for the average ion momen-
tum (4.6) that follows from the kinetic equation for the distribution
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function of ions moving in a gas in an external electric field, a similar
equation for the average ion energy is useful. In order to derive it,
we multiply Boltzmann equation (4.3) by Mv?/2 and integrate the
result over ion velocities. Then the left-hand side of the resultant
equation is the energy that is transmitted from the electric field to
ions located in a unit volume and has the form eFwl;. Repeating
the operations we used in deriving equation (4.6), we obtain in this
case

erNp:/uvgnguﬂw¢w9dwwa. (4.12)

Below we demonstrate the use of this integral relation in the
Maxwell case when the diffusion cross section o*(g) is inversely pro-
portional to the collision relative velocity g. Then using the relation

M My, M —m,
2 v? + VVy,

Vg = -
8 M+mav M+my, * M+m,

accounting for w, = 0 and expression (4.7) for the ion drift velocity,
we obtain the ion mean energy in the form
M </02> _ (M +ma)w12 3

5 5 +57. (4.13)

Above we have taken into account the expression for the mean kinetic

energy of atoms ;
My / 9
7 <Ua,> = 5 T.

Relation (4.13) may be used to evaluate the average energy of
ions drifting in a gas in an external electric field. As an example,
we consider the Wannier case [61] where the cross section of ion—
atom scattering does not depend on the collision velocity and the
scattering is isotropic in the center-of-mass reference frame. In this
case the correct solution of this problem is possible at high fields
yielding [61]

g =

w; = 1.147vVaX, ¢ =1.18MaX,

(4.14)
el 3 1

h = — = — A>T,
where a I Naa*’a>>

In this case 2¢;/(Mw?) = 0.90 that characterizes the accuracy of
formula (4.13) for this case.
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4.2. Mobility of ions at low field strengths

The mobility of a charged particle K is defined as the ratio of
its drift velocity w to the electric field strength F', or
w
K=—. 4.1
. (415)
The ion mobility does not depend on the electric field strength at low
fields
eFAKLT, (4.16)

where A is the mean free path of ions in the gas. This condition
implies that the energy which the ion takes from the electric field
between subsequent collisions is small compared to its thermal energy.
As a result, the ion drift velocity is small compared to the typical
ion thermal velocity in this case. Equation (4.6) can be a basis for
determination of the ion mobility in a gas at low fields. Then the
distribution function is close to the Maxwell one and therefore can
be written in the form

Fv) =) [1+ovs9(v)] (4.17)

where ¢(v) is the Maxwell distribution function of the ion, the elec-
tric field is along the z-axis, and the function ¢ (v) can be determined
by solving the kinetic equation.

A numerical method of solution of this equation is based on
expansion of the function 1 (v) in series of the Sonine polynomials
Sm(u?), where u = v//2T/M is the reduced ion velocity. This
method is called the Chapman — Enskog approximation [62, 63], and
in the case of ion drift n = 3/2. We demonstrate the Chapman—
Enskog method in the first approximation when % is independent
of the ion velocity. Then the parameter ¢ can be determined by
integral relation (4.6) for the ion distribution function which in this
case has the form

eFN; =h / 19290" (9)ve (V)@ (va)dvdv,

= %u / 90" (9)p(v)p(va)dvdv, .
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Next, the ion drift velocity is by definition

= /Vf(v)dv =%<02> .

From this we have for the ion mobility (4.15) in the first Chapman —
Enskog approximation

~ 3evm
K 4.18
LT 8N,5V2Th (4.182)
introducing in this way the average cross section as

_1 o2 g pg?
— =—. 4.18b
~ 2 / YT T (4.18b)

0

Note that according to this definition, the average cross section
5(T) is the momentum transfer collision integral [62, 63] Q(11(T):
a(T) = QUD(T) . The first Chapman — Enskog approximation coin-
cides with the correct result for the mobility of heavy ions in a gas
M > m, (compare formulas (4.11a) and (4.18)). In addition, this
approach gives the correct result in the Maxwell case if 0*(g) ~ 1/g
(compare formulas (4.8), (4.15) with (4.18)). The second Chapman—
Enskog approximation yields [58]

ding
2 Ma~gr
Kip=Ki(1+4), A=z— ( 5 ) EOR
2T
Q=4/—a0, 0(2)=/(1—005219)d0.
m

The simplest case of ion drift in gases corresponds to the
Maxwell case with the inverse velocity dependence for the diffusion
cross section o*(v) ~ 1/v. Then the ion drift velocity is given by
formula (4.7) that follows from integral relation (4.6) and is valid for
any electric field strength. This case takes place for the polarization
interaction potential between ion and atom

2

(4.20)
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that is realized at large ion —atom distances R and « is the atom po-
larizability. The cross section ocap, [55] of the ion capture by the atom
for this interaction potential is given according to formula (3.19) by

2
ae
Ocap = 2T\ — , (4.21)
“p 11g?
where p is the ion—atom reduced mass, g is the relative ion—atom
velocity. On the basis of this cross section we obtain from formulas
(4.8), (4.11) for the mobility of ions in a foreign gas

e

K=——+—.
21 Nan/op

The diffusion cross section of the ion—atom scattering under
polarization interaction potential (4.20) between them is close to the
capture cross section and is equal to [64, 2]

(4.22)

. ae?
o* (v) = / (1~ cos ) do = 221 [ 7 (4.23)

9>’
i.e. exceeds the capture cross section by about 10%. For this cross

section the ion mobility reduced to the number density of gas atoms
N, =2.69-10" cm 3 is given by [64, 65]

36 cm?

K= o
vapV s’

where the ion—atom reduced mass is expressed in atomic mass units
(1.66 - 1072* g), and the polarizability is given in atomic units. It
is of importance that this mobility does not depend on temperature,
and ion parameters are taken into account by the ion—atom reduced
mass only.

In reality, the accuracy of this formula may be estimated by
matching this formula with experimental data, and Table 10 contains
the ratio of the experimental quantities of the mobility of alkali ions
in rare gases at room temperature [66, 67] to those calculated by for-
mula (4.24). One can see that the experimental data exceed the the-
oretical ones, with the average ratio of these values being 1.154+0.10,

(4.24)
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Table 10. The ratio between experimental and
theoretical mobilities of ions in rare gases [2].

He | Ne | Ar | Kr | Xe
Li | 1.27 | 1.17 | 1.06 | 1.07 | 1.06
Na | 1.38 | 1.24 | 1.07 | 1.06 | 1.09
K 135128 |1.08 |1.10 | 1.07
Rb|1.29|1.26 | 1.08 | 1.08 | 1.07
Cs | 1.29 | 1.18 | 1.07 | 1.08 | 1.07

and for the mobility of ions in helium this ratio is 1.30 £ 0.07. Cor-
recting formula (4.24) on the basis of the data of Table 10, instead
of formula (4.24) we approximately obtain

oo 31E2 cm?
- Jap Vs’

Roughly, this corresponds to the use of polarization capture
cross section (4.21) instead of diffusion cross section (4.23) for the
polarization interaction potential in formula (4.8) for the ion drift
velocity or its mobility. Thus, as follows from this analysis, the use
of the polarization ion— atom interaction potential allows us to de-
termine the ion mobility in gases at low fields with the accuracy
about 10%.

(4.25)

4.3. Mobility of ions in parent gases at low fields

We now consider the mobility of atomic ions in a parent atomic
gas if the cross section of the resonant charge exchange process ex-
ceeds significantly the cross section of elastic ion—atom scattering.
Then the effective ion scattering proceeds due to resonant charge
exchange as a result of the Sena effect, as shown in Fig. 7. The
scattering results in a transfer of charge from one atomic core to an-
other, and hence the charge exchange cross section characterizes the
ion mobility. As seen in the center-of-mass frame, this process leads
to effective ion scattering by the angle ¥ = m. Correspondingly, the
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diffusion cross section is [68]
o* = /(1 —cos¥) do = 20reg , (4.26)

where opes is the cross section of the resonant charge exchange pro-
cess. Then, assuming the resonant transfer cross section ops to be
independent of the collision velocity, we obtain from formula (4.14)
for the drift velocity of ions in the parent gas in the first Chapman —
Enskog approach [60, 69, 2]

F 2T
:KIF:L: -0.478,
F F
g = eF )\ _ e <1,

T 2Ny0resT

where A = (2N,0.5)” " is the mean free path of ions with respect
to the resonant charge exchange process, M = m,, and S is the
small parameter in this case. In the second Chapman— Enskog ap-
proximation we have in this case (ma, = M, ¢ = 0) according to
formula (4.19) A =1/40. This gives for the ion velocity

|2T
wi = M . 0.48ﬂ, ﬁ <1. (428)

Above we assumed the resonant charge exchange cross section
independent of the collision velocity. Following the method of pa-
pers [70, 60], we now account for weak velocity dependence (2.2) for
the resonant charge exchange cross section. It is simpler to use ve-
locity dependence (3.5) for the electron transfer cross section. Then
on the basis of formulas (4.26) and (3.5), we have for average cross
section (4.18b)

o [e.e]
1 2o\0/2
A1) =5 [ e stds = [ouatan) () e e
0 0

0
= Ures($0)$0/2 <3 — 5) .
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Fig. 7. The Sena effect.

By expanding this value in small § and retaining two terms of this
expansion, we represent the result in the form

3
(T) = 20ves(z9), where Inzyg= —9(3) = 3~ C =0.923,

and C = —0.577 is Euler’s constant. The resonant charge exchange
cross section in formula (4.27) is taken at the collision energy
T exp(0.923) = 2.5T in the center-of-mass reference frame, or at the
double energy in the laboratory frame. The ion mobility in a parent
gas in the limiting case of low electric field strengths according to the
first Chapman — Enskog approximation [70] is

. 0.331e
Nav/Tmy 0ves(2. 207)

where the collision velocity is vy = /2T/m,, and the argument of
the resonant charge exchange cross section oy indicates the velocity
at which this cross section is taken. In the second Chapman — Enskog

Ki (4.29)
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approximation we have [69, 2]

0.341e

K = .
NovVTmg oves(2.1v7)

(4.30)

Reducing the ion mobility to the number density of gas atoms under
normal conditions N = 2.69 - 10! cm ~2, we rewrite formula (4.30)
in the form [69, 2]

1340 cm?
K= 4.31
VT'mg opes(2.1vp) V-8 ( )

where the temperature 7' is given in Kelvins, the atom and ion mass
my = M are expressed in atomic mass units, and the resonant charge
exchange cross section is given in 107'° cm?; the argument indicates
the collision velocity that corresponds to the collision energy 4.57 in
the laboratory frame. Figure 8 shows the values of the mobilities of
atomic ions in parent gases at temperatures 7' = 300 K, 800 K. These
values are obtained on the basis of the resonant charge exchange cross
section of Fig. 4 with accounting for correction due to ion— atom
elastic scattering. The accuracy of these data is approximately 10%.
Note that according to formula (4.31), the temperature dependence
of the reduced mobility of ions in a parent gas is limited to neglecting
the ion—atom elastic scattering

K(T) ~T%?71/2, (4.32)

Above we neglected elastic scattering of the colliding ion and
atom in the resonant charge exchange process. We now take account
for this effect in the limit when elastic scattering gives a small con-
tribution to the ion mobility. We have from formula (3.21)

T o T ae?

Ores = = By + — —5—
270 4 REe
where ¢ is the collision energy in the center-of-mass frame. Note that
above we used only the first term of this formula, and the second term
is considered here as a small correction. Averaging this cross section
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over collision velocities, the mean cross section or the momentum
transfer collision integral in the expression of the ion mobility reads:

2 w2 ae?

_ _ 011 - _c . 16T~ (27
5(T) = V(T ores45T) oG BT |

A (4.33)

and the argument indicates the energy in the laboratory frame at
which the resonant charge exchange cross section is evaluated (in this
reference frame the colliding atom is at rest). The correction of the
second Chapman — Enskog approximation according to formula (4.19)
and velocity dependence (3.5) for the charge exchange cross section
yield:
(1-9)?

40
Thus from formula (4.33), if AK < K (the total mobility is
Ky — AK, and Kj is the mobility in neglecting ion— atom elastic
scattering), we obtain for the mobility correction

A =

AK m2ae?
K 16T0ues(3T)0ves(4.5T)

(4.34)

The value of this effect can be understood from Table 11 [2]
which presents a relative decrease AK of the ion mobility in the
parent gas due to elastic ion— atom scattering determined by the
polarization interaction. This correction is given in Table 9 for ions
and atoms of the alkali metals and rare gases. One can see that the
contribution of ion—atom elastic scattering into the mobility exceeds
the accuracy of this value determination using the asymptotic theory
for the resonant charge exchange cross section. Hence, we account for
this effect, including the data of Fig. 8. Note that the temperature
dependence of the correction to the ion mobility and of its relative
value are

AK

AK(T) ~ T3/273/2 ~ Tt (4.35)

respectively. The effect of elastic ion—atom scattering is taken into
account in Fig. 8, as well as in Fig. 9, where the mobility of atomic
helium ions in helium at low electric field strengths evaluated using
formula (4.24) is compared with experimental data [71—75].



264

16

14

12

K,cm?/(Vs)

10

B. M. Smirnov

;
_ i
~ []
- ) N . .
| | | | | | | | | | |
100 200 300 400 500 600 700
T, K

Fig. 9. The mobility of He™ in helium at low
fields. Theory: 1 — formulas (4.23), (4.24), 2 —

[64] experiment: 3—[71], 4—[72], 5—[73], 6 —

[74], 7 [75].

Table 11. The relative decrease of the ion mobil-
ity AK/K in the parent gases at room tempera-
ture due to elastic ion—atom scattering [2].

Ton, gas | AK/K, % | Ion, gas | AK/K, %
He 5.8 Li 12
Ne 7.8 Na 8.2
Ar 11 K 8.9
Kr 6.0 Rb 7.7
Xe 9.2 Cs 7.5
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Table 12. The zero-field mobility (cm? /V s) of
inert gas ions in the parent gases at indicated tem-
peratures. Theoretical data are given in parenthe-
ses, experimental data are averaged over different

measurements.
T, K ~ 300 195 77
He 104+ 1.0 (11) 12 + 1(13) 16 + 1(17)
Ne 4.1 £0.1 (4.0) 4.3+0.3 (4.6) | 5.3+0.5 (6.0)
Ar 1.5 £ 0.1 (1.6) 1.94+0.3 (1.8) | 21 £0.1 (2.3)
Kr 0.85 + 0. 1(0 81) (0.92) (1.1)
Xe [0.53£0.1(0 52) (0.60) (0.78)

Evaluating the correction to the mobility due to elastic scat-
tering, we are able to calculate the mobility in a wide tempera-
ture range compared to room temperature. Table 12 contains av-
eraged experimental data for the zero-field mobilities of the inert
gas ions in parent gases taken from [5]. We compare them with
calculations based on formulas (4.31), (4.33) and the asymptotic
theory for the resonant charge exchange cross section. Note that
the accuracy of the theory and experiment is comparable for these
systems and we estimate it to be better than 10%. The compar-
ison given in Table 10 confirms this accuracy. We provide one
more example of comparison of the theoretical and experimental
data. Averaged over measurements [76—79], the zero-field mobil-
ity of atomic cesium ions in cesium vapors is 0.12 + 0.03 cm? /V s
in the temperature range 560 £ 80 K, and the theory gives the
mobility 0.11 & 0.01 cm?/V s for this case and the temperature
range. Hence the theory provides a higher accuracy than the exper-
iment.

A more precise comparison of the asymptotic theory and ex-
periment is given in Fig. 11 and 12, where the values of the mo-
mentum transfer collision integral evaluated by formula (4.33) are
compared with those obtained by Viehland and Mason [8] from the
experiments. In this case the momentum transfer collision integral
is determined from the mobilities calculated by formula (4.18a), and
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the special analysis allows one to determine the effective temperature
for the cross section. This comparison in the helium case (Fig. 10)
shows that formula (4.33) is valid down to small temperatures where
the contribution from elastic scattering to the momentum transfer
collision integral is not small. Next, the resonant charge exchange
cross sections for the xenon ions (Fig. 11) which are found in dif-
ferent fine states differ mostly due to different binding energies of
the transferring electron, and the difference in these cross sections is
approximately 10%. From the above comparison it follows that the
asymptotic theory for the resonant charge exchange process provides
the accuracy of the calculated mobilities of atomic ions in parent
gases within 10%.
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Fig. 10. The momentum transfer collision inte-
gral, obtained in [8] with usage of mobility experi-
mental data: 1 — [80, 81], 2 [82], 3 [80], 4 —
formula (4.33).
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Fig. 11. The momentum transfer collision integral
for atomic xenon ions in different fine states. 1,2
are obtained for the total ion momentum 3/2 and
1/2, correspondingly in [8] on the basis of measure-
ments [83]; 3,4 are given by formula (4.33) for the
ion momentum 3/2 and 1/2, respectively.

4.4. Mobility of ions at intermediate and high field
strengths

At high electric fields, the condition (4.16) is reversed and
takes the form
eFA>T. (4.36)

In that case the ion drift velocity is much greater than its thermal
velocity, and because of the absence of elastic scattering, ion veloci-
ties along the field direction are much larger than in other directions.
We start from ion drift in a foreign gas when a long-range interac-
tion between atoms is the polarization one. The typical ion—atom
interaction potential is given in Fig. 12, and a long-range tail of this
interaction is the polarization interaction potential (4.20). A typical
ion energy is small compared to the potential well depth and the ion
drift velocity is determined by the polarization interaction potential.
According to formula (4.8), the ion mobility does not depend on the
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Fig. 12. A typical form of the ion-atom interaction
potential as a function of the separation.

electric field strength. On contrary, if we have the dependence of the
ion mobility on the mean ion energy or the electric field strength, it
is constant at small ion energies or fields, and the mobility obtains
the dependence on these quantities when a typical ion energy is com-
parable with the potential well depth. An example of such a mobility
dependence is given in Fig. 13. In principle, this dependence gives
the interaction potential as a function of the ion—atom distance. For
example, we approximate the ion—atom interaction potential U(R)
as a function of ion—atom distances R by the formula

(1+7) <%>1Q — 4y <%>6 —3(1—=7) <%>4] )

(4.37)
where D is the potential well depth, R, is the equilibrium ion-
atom distance corresponding to the interaction potential minimum.
Table 13 contains the parameters of this interaction potential [84]
obtained from the mobility data. Note that the value 3(1 — v)DR?
in this expression is the atom polarizability, and this parameter com-

U(R) = g
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Table 13.

Ion—atom | D, meV | Re, A | ~
Lit - He 474 222 0.1
Kt -Ar 121 3.00 | 0.2
RbT - Kr 119 3.34 0.2
Cst—Xe 106 3.88 0.2

bination practically coincides with the atom polarizability. The data
of Fig. 13 and Table 13 demonstrate the connection between the ion -
atom interaction potential and the mobility of ions in an atomic gas.
One can determine the ion —atom interaction potential on the basis of
the mobility dependence on the electric field strength. This interac-
tion potential can be used for calculation of the diffusion coefficients
of ions moving in the gas in an external electric field, as well as the
information on the ion diffusion coefficients may be used for determi-
nation of the ion—atom interaction potential, if the transport coef-
ficients are determined by ion—atom elastic scattering (for example,
[85, 86]).

Let us consider the drift of atomic ions in a parent gas at
high fields. We neglect ion— atom elastic scattering in the course
of ion evolution, and ion scattering is determined by the resonant
charge exchange process. The sequence of events in a strong electric
field is such that the ion accelerates under the action of the field,
stops as a result of the charge exchange event, and then this process
repeats. In considering this limiting case, and following to [11, 12],
we find the ion drift velocity under the assumption that the charge
exchange cross section oys does not depend on the collision velocity.
Tons are accelerated in the electric field direction, and the velocity in
the field direction is large compared to that in transverse directions.
We introduce the distribution function f(v;) of ions on velocities
v, in the field direction which is analogous to the probability P(t)
of absence of the charge exchange event through time ¢ after the
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Fig. 13. The experimental drift velocity for K —
Ar [87] (a) and Cs™ —Xe [88] (b) as a function of
the reduced electric field strength.
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previous exchange event. This probability satisfies the equation

P
Y _p
a7

where v = Nv,opes is the rate of the resonant charge exchange pro-

cess. Its solution is
¢
P(t) = exp (—/udt’) .
0

The equation of motion for the ion,

M % —eF, (4.38)
relates the ion velocity to the time after the last collision by the ex-
pression v, = eF't/M , so that P(t) is the velocity distribution func-
tion for the ions. Assuming the cross section of the resonant charge
transfer process opes to be independent of the collision velocity, the
distribution function is

Muv?
f(vy) = Cexp (— 2eF§\> , vy >0, (4.39)
where C' is a normalization factor, and the mean free path is A\ =
1/(Noyes). The ion drift velocity and the mean ion energy are

__ [2eFX  _ MuvZ eF)
W = Vg = W, £ = 9 —T (440)

respectively, and according to criterion (4.36), this drift velocity ex-
ceeds significantly the thermal velocity of atoms. Note that in this
case we have

2e s

(M + my)w? T
whereas according to approximate relation (4.13) for this case this

ratio is equal to one. This characterizes the accuracy of formula (4.13)
in a general case.
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The above operation allows us to take into account the energy
dependence of the resonant charge exchange cross section. Indeed, let
us use formula (3.5) for the resonant charge exchange cross section

)
v 2
Ores(v) = Ores(v0) (Z()) 0= m

where the argument gives the collision velocity, and we have ¢ < 1.
Repeating the above operations, we obtain for the distribution func-
tion in this case instead of formula (4.39)

Mv%Naares(vm)

] . 0> 0, (4.41)

From this we obtain for the ion drift velocity w and the average
kinetic ion energy & instead of formula (4.40)

[ o@-aer 17 T ()
ML )

MNaares(vo)vg

2
M @—aeF 177 ()
2 MNaares(vg)vg r(-L)’

In order to account for weak velocity dependence of the reso-
nant charge exchange cross section, we use the same method as when
deriving formula (4.29). Indeed, let us expand formulas (4.42) for
small 6 and require the term proportional & be zero. This allows
us to choose an appropriate value of vy. Applying this operation for
the drift velocity, from the above requirement we obtain the following
equation

2eF
In [

m] =1-2¢(1) + 9 (%)

which gives vy = 1.34/ %

Repeating these operations for the ion mean energy, we find

the optimal velocity for the mean energy vy = 1.4 % .
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Thus, formula (4.42) can be rewritten in the form in the high
field strength limit

2eF B eF
, &€= .
TM N,Ores (1.3 %) 2N, Ores (1.4 %)

(4.43)

The drift ion velocity at moderate electric field strengths can

be determined by solving the kinetic equation for the ion distribution

function [89, 69, 90]. It is convenient to approximate the distribution
function in the form

Y 0.4853
YV M a0z (4.442)

where ( is the solution of the equation
el
2T N, Ores [ 2L (4.5 + 1.6B)

w =

B = (4.44b)

Because of weak velocity dependence of the resonant charge exchange
Cross section oreg, this relation corresponds to the definition of the
parameter [ in formula (4.27). Note that the expansion of the ion
mobility at low strengths has the form K = Ky + CF?, where C
is a constant, and this expansion follows from the symmetry consid-
eration. Formula (4.35a) gives the second term of expansion over a
small parameter ~ F3/2 | and this is not correct. Because this is an
approximate formula which does not pretend on the accuracy better
than 10%, this inaccuracy is not significant or realistic.

Figure 14 compares calculations on the basis of formulas (4.35)
with experimental data [91—93]. In addition, Fig. 15 shows the mo-
bility of atomic argon ions in argon at small and moderate fields.
This comparison with the experiment characterizes the accuracy of
the asymptotic theory for the mobility of atomic ions in the parent gas
or vapors. Thus, the resonant charge exchange process whose nature
is connected with the structure of atomic particles is of importance
for ion transport processes in parent gases. The asymptotic the-
ory that accounts for the process nature, simplifies the analysis and
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allows one to evaluate the parameters of this process with a suitable
accuracy under various real conditions.

20
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Fig. 14. The drift velocity of Kr*and Xe™ in
parent gases as a function of the reduced electric
field strength. Solid curve — formula (4.44) [90],
experiment: 1 —[91], 2—[92], 3 —[93].

4.5. Diffusion of atomic ions in gases in external fields

Under thermodynamic equilibrium, the diffusion coefficient of
ions is connected with their mobility by the Einstein relation [96 —98]

KT
D==—"". (4.45)
(&

In particular, formulas (4.18), (4.19) and the Einstein relation give
the diffusion coefficient of ions in an atomic gas in the second Chap-
man — Enskog approximation [58]:

1 3vVnT
(1+ A) 8No+\2u’

Dy = (4.46)
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Fig. 15. The mobility of Ar*t—ions in argon.
Theory: formula (4.31) — open circles. Experi-
ment: closed circles—[94], solid curve—[95, 1].

where the average cross section of ion—atom scattering is given by
formula (4.18b). The diffusion coefficient does not depend on the di-
rection as far as the distribution function of ions is isotropic. But in
strong electric fields the ion distribution function is anisotropic, and
the diffusion coefficients for motion along the field D) and perpen-
dicular to it D become different.

The diffusion coefficient of ions follows from formulas (4.25)
and (4.31) for the ion mobilities at low fields and the Einstein relation.
Using formula (4.25) for the diffusion coefficient of ions in a foreign
gas, we get

4 cm? T
D=(27+2)-10 Vs o’

and using formula (4.31) for the mobility of atomic ions in the parent
gas, we have

cm? T 1

D =0.12 . _.
V-s M 0res(2.1v7)
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These diffusion coefficients relate to the normal number density of gas
atoms N = 2.69-10' cm =3, the temperature T is given in Kelvins,
and other notations are the same as in formulas (4.25) and (4.31).

In order to demonstrate this, we find the diffusion coefficients
in the case of motion of atomic ions in a parent atomic gas in a strong
electric field. The kinetic equation for the ion velocity distribution
function f in a general case of ion motion in a gas in an external
electric field has the following form

(V - W)Vf + %g_‘f’ = Icol(f) (4.47)
and the ion diffusion coefficient in this gas D is defined as j; =
—DVN;. Here j; is the ion current density due to the ion number
density gradient which is small on a distance of the order of the mean
free path of ions in a gas. Hence, we expand the ion distribution
function f(v) over this small parameter by representing it in the
form

f(v) = fo(v) = B(v)VIn N;. (4.48)
The unperturbed distribution function fo(v) satisfies the equation

F o
eﬁ a—j‘}v) = Icol(fO)-

In addition, the normalization condition gives

/<I>(V)dv=0.

Substituting the above expansion for the ion distribution function
into kinetic equation (4.47), we obtain the equation for the addition
part of the distribution function

eF do

= W d_vz + Icol((I>) (449)

('Uz - 'wz)fO

where z is the direction of the density gradient.
Let us determine the ion current density j = [vf(v)dv on
the basis of the distribution function. Using the definition of the
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diffusion coefficient, we then obtain the diffusion coefficient of ions in
the direction z

1
D, = N /(vz —w,)P(v)dv. (4.50)

We now obtain an integral relation for the distribution func-
tion addition ®(v) analogous to relation (4.6) by multiplying equa-
tion (4.50) by v, and integrating it over ion velocities. Because of
the normalization condition for the addition ®(v), the second term in
the right-hand side of the integral equation is zero, and this equation
takes the form

gR— m %
(7= w?)Ni= 7 [ g0 (@PWp(ea) dvdve  (451)
a

where we used the operation for derivation of integral relation (4.6)
including the integration over scattering angles

may

/(Uz —v,)do = mgza*(g)

and we used the notations of formula (4.6). Equation (4.51) allows
us to find the diffusion coefficient in the case 0*(g) ~ 1/g. Then this
equation contains the same integral from the addition distribution
function as expression (4.50) for the diffusion coefficient, and we have

D, = % (v2 - w?) (4.52)
where the collision rate is ¥ = N,go*(g). One can see that for
the isotropic distribution function the diffusion coefficients of ions
in different directions are identical, while they are different for an
anisotropic distribution function in the ion rest frame.

We now determine the diffusion coefficient of ions along electric
field when atomic ions move in the parent gas in a strong electric
field. Assuming the mean free path of ions A to be independent of
the ion velocity, we write the kinetic equation for ion distribution
function (4.47) in the form

el of 1 Vg

W o = X(5(1;95) /v;f(v;)dv; - Tf(vx)
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and introducing the reduced velocity

M 1/2
v= (eFA) Ve

we obtain equation (4.49) in the following form

w2
%Ni (u - \/%) exp (—;) n(u) = Z—i) +ud — 5(u)/u'(1)(u') du',

where we use for the ion drift velocity w = (2eFX/mM)"/?

this equation, we obtain

2 2
o = ENiexp (_u_) (u_ - \/g—i-C) n(u)
W 2 2 m

and the constant C follows from the normalization condition
J ®(u)du =0 that gives C' = 2/m — 1/2. Thus, we finally obtain

. Solving

Dy = % /(Ux —w) ®dvy, = Aw (g - l) = 0.137 \w . (4.53)
i T 2
The transversal diffusion coeflicient of atomic ions in a par-

ent gas can be readily found because the distribution function in the
perpendicular direction to the field coincides with the Maxwell dis-
tribution function of atoms. The variables in the kinetic equation are
divided for motion along the field and perpendicular to it, and the
diffusion coefficient in the transversal direction to the field is equal
to [59]
T
= e
The ratio of the longitudinal and traversal diffusion coefficients in
this case is:

D, (4.54)

Dy Mw? eF\
— =01 = 0.087— 4.
D, 0.137 T 0.087 T (4.55)
which is large because of criterion (4.36).
Let us consider the Lorentz case when the ion mass M is
small in comparison with the atom mass m,, M < m, and the

electric field strength is high. In particular, this case relates to motion
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of electrons in an atomic gas. If the rate of ion— atomic collisions
v(v) does not depend on the collision velocity v, then according to
formula (4.52) we have

D, =D = < 2> . w? K <v2> , v(v) =const. (4.56)

If the cross Sectlon of ion—atom collision o*(v) does not depend
on the collision velocity v, the ion drift velocity w and the diffusion
coefficients in the limit of high fields (M < m,, eFA > T) [61, 1, 99]
are, respectively:

VeF ) ma\ 4 |eF 3/2
UJ—0897W, D 0292<M> ﬁ)\ ;

1/4 F

Ma [eL" y3/2

Dy =0.144 e
1= 90 <M> M

We note that the results are expressed through the diffusion cross sec-
tion and are identical for the classical and quantum character of ion—
atom scattering. Hence, these formulas are valid both for electrons
and ions.

We also consider the Wannier case [61] at high electric field
strengths eF'A > T when the cross section of ion— atom collision
o*(v) does not depend on the collision velocity v and the ion and
atom masses are identical. In this case the ion drift velocity w, the
transversal and longitudinal diffusion coefficients are, respectively:

eF\ eF 39 eF 39
w=1147T[ =, DL =0.3204/ 2222, Dy =0.2200/ - A2

(4.58)
It is convenient to use the modified model of hard spheres [100] in
the case of the classical ion—atom scattering with the interaction po-
tential U(R) = const/R™, n > 1. This interaction takes place when
an ion penetrates into the atomic core, and transport coefficients are
the expansions over a small parameter 1/n. Then we represent the
transport coefficients of ions at high electric field strengths in the
form [5]

(4.57)

eF
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Table 14. Parameters of formulas (4.59) [5].

M/ma A B AJ_ BJ_ AH BH
0.1 0.514 | 4.32 | 0.343 | 4.60 | 0.195 | 3.43
0.2 0.627 | 3.21 | 0.306 | 3.24 | 0.185 | 2.41
0.5 0.859 | 2.12 | 0.249 | 1.83 | 0.158 | 1.38
0.8 1.042 | 1.70 | 0.224 | 1.43 | 0.148 | 1.02

1 1.147 | 1.55 | 0.212 | 1.25 | 0.146 | 0.91
1.5 1.366 | 1.35 | 0.196 | 1.04 | 0.146 | 0.77
2 1.548 | 1.26 | 0.187 | 0.93 | 0.148 | 0.73
3 1.851 | 1.17 | 0.182 | 0.84 | 0.152 | 0.69
4 2.109 | 1.12 | 0.182 | 0.83 | 0.153 | 0.65

m, [eF 1
D, = A 22 S , 4.59b
S MM Ne (Bl o
Dy = A2 % ! 75 (4.59¢)
[No*(Byw)]

In the limits n — oo, M/m, — 0 formulas (4.59) are transformed
into expressions (4.57), and at intermediate ratios of the ion and
atom masses, the transport coefficients of ions result from solutions
of the kinetic equation for ions. In Table 14 we give the results of this
solution for n = 8;12 [99], representing them in the form of relations
(4.59) that allow us to extend these results to any large n.

5. Conclusions

In this paper we represent the asymptotic theory of resonant
charge exchange that allows one to evaluate the cross section of this
process by expanding it in a power series of a small parameter. This
method enables one to both determine the cross section of the process
and estimate its accuracy. The expansion method over a small pa-
rameter is a reliable approach because it gives the results in a simple
form and evaluates its accuracy under specific conditions. We illus-
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trate this by calculating transport coefficients in a gas in an external
field if the cross section of ion—atom scattering depends weakly on the
collision velocity. Then one can use a modified model of hard spheres
wherein the final result is given in the simple form for the case when
the cross section is independent of the collision velocity, but this cross
section is related to a certain collision velocity which follows from the
expansion of the result in a power series of a small parameter. This
simplifies the result which is represented in the analytical form and
the accuracy of such a simplification can be estimated. These meth-
ods may be extended to more complicate processes and problems.
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